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Abstract
Quantum-Inspired Evolutionary Algorithm (QEA)

is proposed as one of approximate algorithms to solve
combinatorial optimization. QEA is evolutionary
computation that uses quantum bits and suerposition
states in quantum computing. Although conventional
QEA is a coarse-grained parallel algorithm, it involves
many parameters that must be adjusted manually.
This paper proposes a new method of Pair Swap which
exchanges each best solution information between two
individuals. Experimental result shows that the pro-
posed method is a simpler algorithm and can find high
quality solution in binary Knapsack Problem.
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1 Introduction

Quantum computer[1, 2] is a computation model
using quantum mechanical principles such as super-
position state, interference effect, and entanglement
state. Recently, stochastic combinatorial search al-
gorithms combined with evolutionary algorithm have
been recently proposed by incorporating quantum me-
chanical principles or quantum bits[3, 4, 5, 6].

Han et al.[5, 6] have proposed Quantum-inspired
Evolutionary Algorithm (QEA) in which each gene is
represented by a quantum bit. QEA can do single-
point search and automatically shift from global search
to local search like Simulated Annealing (SA)[7]. QEA
can also perform multi-point search like Classical Ge-
netic Algorithm (CGA) in order to solve large-scale
optimization problems.

In QEA, there are more than one subpopulations
(groups) like Island GA (IGA)[8, 9], and inter- and
intra-group migration procedures are performed. Evo-
lution in each group enables coarse-grained paralleliza-

tion and prevents premature convergence, and the mi-
gration procedures can control search diversification
and intensification. However, the adjustment of a
number of parameters is required for the number of
group and migration intervals for each problem.

Therefore, we propose Quantum-inspired Evo-
lutionary Algorithm based on Pair-Swap method
(QEAPS). We have showed that the performance of
QEAPS is better than that of QEA in 0-1 Knapsack
Problem(KP)[10]. In this paper, we keen on evaluating
the performance of QEAPS against that of QEA in 0-1
KP, and we show that the effectiveness of QEAPS. To
be concrete, the search performance and the robust-
ness of QEAPS are verified by performance compar-
ison of constraint handling methods ( when the sum
total of the item exceeds the capacity of the knapsack
in 0-1KP).

2 Quantum-Inspired Evolutionary Al-
gorithm based On Pair Swap

2.1 Quantum Bit Representation of Gene

QEA and QEAPS uses a quantum bit (qubit) as a
gene, while, in conventional genetic algorithm (CGA),
a gene is usually a definite value of binary, integer,
real number, or character. The individual i in the
generation t is composed of the chromosome repre-
sented as a tensor product of the qubits, qi = qi1 ⊗
qi2 ⊗ · · · ⊗ qim and the best solution information that
is binary string discovered in search process (Personal
Best) bi = [bi1, bi2, . . . , bim] . Here, m is the num-
ber of genes or qubits included in an chromosome.
The qubit qij(j = 1, ...,m) has stochastic superposi-
tion state (vector sum) of the two vectors |0⟩ and |1⟩
with each complex probability amplitude.

qij = αij |0⟩ + βij |1⟩ =
[

αij

βij

]
, (1)
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Figure 1: Evaluation of an individual.

Table 1: Lookup table of the rotation angle θik

θik

pik bik f(pi) ≥ f(bi) αikβik αikβik αik βik

> 0 < 0 = 0 = 0

0 1 false θC -θC — ±θC

1 0 false -θC θC ±θC —
Otherwise 0 0 0 0

|αij |2 is the probability that the state of |0⟩ is ob-
served, and |βij |2 is the probability that the state of
|1⟩ is observed. The binary string pi is obtained by
observing qi. The fitness value f(pi) of the individual
i can be calculated from pi like CGA.

2.2 Procedures in QEA and QEAPS

The algorithm of QEAPS that we propose is shown
in Figure 2. We first describe the common process of
QEA and QEAPS (white part of Figure 2), and then
we describe the different process of QEA and QEAPS
(black part of Figure 2).

To begin with, the initialization is carried out by
setting αik and βik to 1/

√
2 in order to equally ob-

serve the states of |0⟩ and |1⟩ in the individual i(= 1).
Next, the evolution of an individual with qubits and
the exchange of the best solution information in the
individual are repeated according to the following pro-
cedure, until a given termination condition is satisfied.

The procedure of the individual update is shown
Figure 1 and as follows. First of all, pi is obtained by
observing qi. And, the fitness f(pi) is calculated from
pi, and the fitness of the individual is decided.

Then, the rotation angle list ui = [θi1, θi2, . . . , θim]
is made from each value of pij and bij and the mag-
nitude correlation of f(pi) and f(bi). This list is
used to increase and decrease the observation proba-
bility of |1⟩ and |0⟩. How to decide the rotation angle
θik(k = 1, . . . ,m) is shown in Table 1[5, 6]. Unitary
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Figure 2: The algorithm of proposed QEAPS.

transformation can be used to change the ratio of the
probability amplitudes αik and βik of the superposi-
tion state.[

α′
ik

β′
ik

]
=

[
cos(θik) −sin(θik)
sin(θik) cos(θik)

] [
αik

βik

]
. (2)

qi is upgrade following the rotation angle list ui and
the rotation matrix.

If f(pi) > f(bi), then the best solution of the new
individual is replaced by the currently observed binary
information.

2.3 Migration Method of QEA

Migration strategy of QEA involves local migration
and global migration. The local migration is the pro-
cess of distributing the best solution information of an
individual with the highest fitness in each group, to
all other individuals in each group, and repeated in
every generations. The global migration is the process
of distributing the best solution information of an in-
dividual with the highest fitness in all groups, to all
other individuals in all groups, and repeated in ev-
ery fixed generations. QEA shows the centralization
of the search, but must determine two parameters of
the number of groups and the timing of global migra-
tion by considering problem characteristics and scale,
convergence speed in a group, rotation angle as QEA
fundamental parameter[5, 6].

2.4 Pair Swap Method of QEAPS

QEAPS utilizes pair swap operation instead of
global and local migration of QEA. To begin with,
two individuals are randomly selected as a pair from
all individuals in the whole group. Then, n/2 pairs are



generated by selecting two individuals from n (even
number) individuals with no overlaps in the group.
Only each best solution information is exchanged in
each pair with out carrying out any operation on the
qubits in the individual.

3 Conputational Experiments

3.1 Experiment Preparation

The 0-1 KP is used for the evaluation experiments
in order to prove the effectiveness of the proposed
QEAPS. The KP in the paper [9] is used as a bench-
mark problem. The number of items N is 100(the first
100 items are used in the benchmark problem). The
weight limit in the KP is set to be 50% of the total
weight of all items. Parameters such as the popula-
tion and the number g of groups in QEA are followed
by the previous researches[6], respectively. Parame-
ters used in QEAPS are followed by QEA as shown in
Table 2.

When the evaluation times, the number of fitness
calculation time, reach the preset value, the search
stops. We perform the same experiments 30 times
using each technique for each problem.

3.2 Constraint Handling Methods

We compare the performances of QEAPS and that
QEA in the following three methods to handle con-
straint violation.

1. Fitness = 0 (Zero)
If the condition is not satisfied, then f = 0.

2. Penalty Function (Penalty)
The penalty function shown by the equation 3 is
used.

f(pi) =

n∑
j=1

ajpij −α max

{
0,

n∑
j=1

wjpij − C

}
, (3)

where, pij is the value of the j-th gene in the
chromosome of the i-th individual, aj is the
profit of item j, wj is the weight of item j,
and C is the capacity of the knapsack, and α =
maxj=1...n {aj/wj}.

3. Random Repair (Repair)
Random Repair [5] that consists of the follow-
ing procedures in applied. Step 2 is applied even
when weight limits are satisfied.

Table 2: Parameter configurations.

Parameter names
Values used

QEA QEAPS

Number of individuals 10, 20, 30, . . . , 100
Number of subpopula-
tions (groups) (g) 5 –

Number of individuals
in a subpopulation

2, 4,. . . , 20 –

Rotation angle (θC) 0.01π 0.01π
Number of observa-
tions 1 1

Interval of global mi-
gration 100 –

Step 1: One item is randomly selected and removed
until the knapsack capacity is filled.

Step 2: One item selected randomly is put in the
knapsack until capacity are exceeded. When
capacity are exceeded, the item put at the
end is removed.

3.3 Experimental Result

Regarding evaluation criteria, we focus on the op-
timal solution discovery rate per trial number Opt[%],
the mean fitness mf . The upper limit of evaluation
times is set to N × 103 as a termination condition of
the search.

As a function of the individual total numbers, Opt,
mf are shown in Figure 3 and 4. First, when pay-
ing attention to Opt, The performance of QEAPS is
better than that of QEA in the same number of in-
dividuals in all constraint handling methods. In Opt
of QEA, Repair is the highest, and Zero and Penaly
are lower. The difference is seen for all number of in-
dividuals between the methods. On the other hand,
such difference is not so seen at QEAPS. Moreover,
Opt is almost 100% in any method when more than
40 individuals are used.

The result of mf in Figure 3 and 4 also indicate
that QEAPS has higher-performance than QEA. In
mf of QEA, there is obvious difference between that
of Repair and these of Zero and Penalty. In QEAPS,
the highly qualified solutions are obtained in all con-
straint handling methods. It should be noted that mf

of Repair, Penalty and Zero of QEAPS is higher than
that of Repair in QEA.

In QEAPS, the difference between Repair, Zero,
and Penalty is quite small. Even though Zero and
Penalty are simple and not specialized in the knapsack
problem, they can search for optimal solutions, con-
sequently QEAPS is more robust against constraint
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Figure 3: Discovery rate and evaluation time (QEA)
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Figure 4: Discovery rate and evaluation time (QEAPS)

methods.

4 Conclusion

In this paper, we focused on evaluating the perfor-
mance and robustness of QEAPS to improve QEA.
We compared the performane between the constraint
handling method in 0-1 KP. Experimental result show
that QEAPS is able to discover the optimal solution at
the higher probability compared with QEA, and that
the solutions found by QEAPS are of even quality,
and that QEAPS is robust against constrain handling
methods.

We plan to verify the search performance in a
larger-scale problem, improve the algorithm, examine
application to other combination optimization prob-
lems, and clarify the characteristic of the problem to
which QEAPS is effective.
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