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Abstract

Process calculus is a kind of models for concurrent sys-
tems. Recent researches in Systems Biology have applied
process calculus as the computational model to capture the
dynamic behaviors of biomolecular systems. In this paper,
we integrate a continuous framework with stochasticπ-
calculus to model the biomolecular systems. To verify the
correctness of this approach, a modified stochastic Pi ma-
chine(SPiM) which was previously developed to simulate
the systems described by stochasticπ-calculus is proposed.
From the consistency of the data obtained from the simu-
lation of biomolecular system and the experimental data, it
shows that the continuous framework introduced into Sto-
chasticπ-calculus is effective in simulating biomolecular
systems.

1 introduction

Concurrency theory [1], especially the process calcu-
lus [2], has been used as a suitable tool to study Systems Bi-
ology [3, 4]. The main characters of biomolecular systems
are interaction and the concurrence. The systems modeled
by process calculus is the same as biomolecular systems to
some extent. The main idea of using process calculus is to
model molecular processes as interaction/communicating
systems. That is to see biological components as concur-
rent processes and their interaction as process communica-
tion or process movement.

Using stochasticπ-calculus [5] to formal model biolog-
ical systems was first introduced by C.Priami [6]. The sto-
chasticπ-calculus enables its application to a wide variety
of biomolecular systems in which quantitative aspects are
key. In stochasticπ-calculus,kinetic constantin biological
reactions are abstracted as channels with base rates, and the
actual reaction rate is calculated as an actual channel rate
from the base rate and the number of processes offering
communications. The selection of a time step and actual
communication is based on these actual rates and follows
Gillespie algorithm. Using the Gillespie algorithm [7], we
can obtain the probability distribution for rules and times.

The simulation of biomolecular processes which modeled
by stochasticπ-calculus is executed based on the Gillespie
algorithm that calculates explicitly which reaction occurs
next and how long it takes. But there are two problems in
this simulation method. First, as we know, the biomolec-
ular system is a concurrent system, all the reactions react
independently. They are not sequential but parallel. But
by using Gillespie algorithm, all the reactions occur one
by one. It cannot describe the real biological system. Sec-
ond, the most important benefit of process calculus is used
to exhibit the concurrence of systems. By using Gillespie
algorithm in the simulation, we cannot see the benefit of
process calculus. Gillespie algorithm cannot simulate the
systems described by process calculus accurately.

To address the above problems, we integrate continuous
framework to simulate the biomolecular systems. This is
inspired by the fact that, in vivo, biomolecular reactions
evolve in a continuous way following a rate that depends
on the concentration of the reactants. Therefore, we should
deal with a non-integer number of processes in process cal-
culus. Furthermore, we need to develop approximations in
order to simulate the continuous reactions. Here we sup-
pose time stepti+1 − ti is small enough to assume that
the reaction rate and the concentrations of reactants remain
constant. To address the concurrent problem, we useLaw
of Mass Actionwhich states that the rate of a reaction is
proportional to the product of the concentration of the reac-
tants. And in every time step, the communications between
processes are applied in parallel way according to the rate.
In order to validate the efficiency of this continuous frame-
work, we modified the stochastic Pi machine(SPiM) [8] to
integrate the continuous framework, so called continuous
SPiM. The original SPiM is a system used to simulate sto-
chasticπ-calculus based on Gillespie Algorithm. From the
consistency of the data obtained from the simulation of Cir-
cadian Clock [9] by the continuous SPiM and the experi-
mental data, it shows that the integration of this continuous
framework with stochasticπ-calculus is effective in mod-
eling biomolecular systems.

The paper is organized as follows. The stochasticπ-
calculus used in this paper is introduced in the next section.



In section 3 the continuous simulation is described. We
apply our approach to model Circadian Clock in Section 4.
Finally, conclusions are given in section 5.

2 The Stochasticπ-Calculus

In a biomolecular system, the molecules are abstracted
as computational processes and the network of interact-
ing molecules are abstracted as a mobile concurrent system
in stochasticπ-calculus. A complicated chemical process
can always be decomposed into a set of many elementary
bimolecular reactions, such as (A + B → · · · ) or uni-
molecular reactions, such as (A → · · · ). Two unimole-
cular reactions can be regarded as one bimolecular reac-
tions, such as (A + A → · · · ). Trimolecular reactions
such as (A + B + C → · · · ) are very rare. Therefore, the
biochemical reactions between reactants can be abstracted
as a communication between two channels with the same
name. This kind of systems is composed by a commu-
nity of co-existing computational process that communi-
cate with each other and that change their interconnection
structure at execution time. The stochasticπ-calculus used
in this paper is introduced in [8]. Here, we briefly introduce
the syntax and the reduction of the stochasticπ-calculus.

Definition 2.1 The syntax of stochasticπ-calculus is as
follows

P, Q ::= νxP Restriction

|P |Q Parallel

Σ Summation

π.P Replication

where:

Σ ::= 0 Null

|π.P + Σ Action

π ::= x〈n〉 Output

x(m) Input,x 6= m

Definition 2.2 The reduction of stochasticπ-calculus is as
follows, each channel x is associated with a corresponding
reaction rate given byrate(x):

Q ≡ P
r
→ P ′ ≡ Q′ ⇒ Q

r
→ Q′

P
r
→ P ′ ⇒ νxP

r
→ νxP ′

P
r
→ P ′ ⇒ P |Q

r
→ P ′|Q

x〈n〉.P + Σ|x(m).Q + Σ′ rate(x)
−→ P |Q{n/m}

According to Definition 2.1, the basic component is a
summationΣ, which is a choice between zero or more out-
putx〈n〉or inputx(n) actions that the component can per-
form. P |Q is parallel composition, and a given component
P can contain a restricted reaction channelνxP . Replica-
tion !π.P represents multiple copies of a given component
π.P . π is either output or input actions. Two components
in a biological system can react by performing complemen-
tary input and output actions on a common reaction chan-
nel. As show in Definition 2.2, summation containing an
outputx〈n〉.P can react with a parallel summation con-
taining an inputx(m).Q. The reaction occur withrate(x),
after which the namen is bound tom in processQ and
processesP andQ{n/m} execute in parallel.

3 Continuous Simulation

A configuration of the biomolecular system described
by stochasticπ-calculus is a matrix ofMn×2(R

+) where
mi,1 represents the concentrations of interacting molecules
which is described by input channelxi(m), whilemi,2 rep-
resents the concentrations of output channelxi〈n〉. The el-
ements in the matrix are real numbers. An instantaneous
configurationE(t) = (mi,j(t))1≤i≤n,j=1,2 with each in-
stantt ∈ R+.

To model the reactions we use theLaw of Mass Action
which states that the rate of a reaction is proportional to the
product of the concentrations of the reactants. That is, if we
have a reaction of the formA + B → · · · , then the rate of
this reaction isr = k × |A| × |B|, for unimolecular reac-
tions, such as (A → · · · ), the rate isr = 1

4 × k × |A|2,
wherek is calledkinetic constant. In the stochasticπ-
calculus, we are using the rate of channel to representski-
netic constant, and the concentrations of the reactants can
be obtained from the configurationMn×2(R

+). In order
to simulate evolution of biomolecular systems in computer,
we need to develop approximations. Here for simplicity we
use the rectangle rule; that is, we supposetl+1 − tl = p is
small enough to assume that the rate and the configuration
remain constant. With this assumption we can approximate
the effect of a communication during an interval of time of
lengthp by p×r. The implementation of continuous simu-
lation based on stochasticπ-calculus executes five steps as
follows:

1. Initialize the configuration of the biomolecular system
described by stochasticπ-calculus

2. Initialize the absolute simulation timet = 0

3. Select out the communications which can be applied.

4. According to the rates of the communications, config-
uration and the small enough time intervalp, calculate



the quantities of reactants and productions changed in
each communication, and update the configuration.

5. Set the timet = t + p, and go to step 3.

4 Simulation of Circadian Clock

Circadian Clock phenomena are found in a large va-
riety of organisms from cyanobacteria to mammals, and
have probably evolved more than once. Recent works [9]
suggest that the biomolecular mechanism of clocks shares
common features over a wide range of organisms.The in-
teraction consists of two interleaved feedback loops. In the
positive loop, the activator element enhances its own ex-
pression. In the negative loop, the activator element en-
hances the expression of the negative element, which in
turn sequesters the activator, as shown in Figure 1. The bi-
ological process involves two genes, an activator,A, and
a repressorR, they are transcribed into mRNA and subse-
quently translated into protein. The activatorA binds to the
A andR promoters, and increases their basal transcription
rates. Thus,A acts as the positive element in the system,
whereasR acts as the negative element by sequestering the
activator. This simple model is not intended to abstract any
particular biomolecular system, but to capture the basic de-
sign principles shared by many systems, and believed to
produce its basic functionality.

Figure 1: The network for a core Circadian Clock

We start by building a stochasticπ-calculus abstraction
of the Circadian Clock process. The reactions in the
process are abstracted as communications on channels,
and reaction rates as channel rates.

A-related process
DNA A ::= tA().(DNA A|RNA A)|pA(u).DNA A2(u)
DNA A2(u) ::= tA′().(RNA A|DNA A2(u))|u〈〉.DNA A

RNA A ::= trA().(RNA A|A)|drA()
A ::= pA〈uA〉.uA().A|pR〈uR〉.uR().A

|νu(bind〈u〉.A Bound(u))|dA()
A Bound(u) ::= dA().ReleaseR|u().A
ReleaseR ::= u〈〉

R-related process
DNA R ::= tR().(DNA R|RNA R)|pR(u).DNA R2(u)
DNA R2(u) ::= tR′().(RNA R|DNA R2(u))|u〈〉.DNA R

RNA R ::= trR().(RNA R|R)|drR()
A ::= bind〈u〉.R Bound(u)|dR()
R Bound(u) ::= dR().ReleaseA|u().R
ReleaseA ::= u〈〉

In order to simulate our model abstracted by stochas-
tic π-calculus we chosen the following basal channel
rate: rate(tA) = 4, rate(tR) = 0.001, rate(trA) =
1, rate(trR) = 0.1, rate(drA) = 1, rate(drR) =
0.02, rate(bind) = 100, rate(pA) = 10, rate(pR) =
10, rate(tA′) = 40, rate(tR′) = 2, rate(dA) =
0.1, rate(dR) = 0.01. And we take the stochasticπ-
calculus abstraction of Circadian Clock as the input of con-
tinuous SPiM. The numbers of channels and processes ob-
tained from continuous SPiM were plotted as a function of
time and illustrate the oscillatory behavior.

Figure2: The oscillatory behavior ofA Protein

Figure3: The oscillatory behavior ofR Protein



From Figure2, we can see the oscillatory behavior ofA

protein, and Figure3 exhibits us the oscillatory behavior of
R protein. At first, thekinetic constantof A promoter’s
transcription is larger thanR promoter’s. With the accu-
mulation ofA proteins, it will activateA andR promoters,
increase their transcription rates. It will result in moreA

andR proteins, meanwhile, becauseR − A binding has
the largestkinetic constant, moreR proteins will bind to
A proteins to repress the binding betweenA protein and
A, R promoters, and decrease the number ofA proteins.
Small number ofA proteins may lead to low transcription
rates ofA andR promoters because there will be few ac-
tivatedA andR promoters. The smallkinetic constantof
R promoters then leads to oscillations, which can be de-
scribed as successive transitions between induced and re-
pressed states.

As shown in Figure2 and Figure3, the results of the
model yield the required oscillatory behaviors. In this we
have reproduced the known result of [9], providing support
for the correctness of the continuous abstraction framework
based on stochasticπ-calculus.

5 Conclusion

In this paper we integrate a continuous framework with
the stochasticπ-calculus. The numbers of channels and
processes in the stochasticπ-calculus are regarded as the
real number to show continuous quantities of the sub-
stances. The communications in the stochasticπ-calculus
occurred in a parallel way in each time unit. This approach
has been used to formal model the Circadian Clock. In or-
der to validate our approach, we modified the Stochasitc
Pi Machine(SPiM) to approximate the continuous simula-
tion of biomolecular systems. From the continuous simula-
tion of Circadian Clock, it can show us that the continuous
framework of stochasticπ-calculus is a reliable approach
for simulating quantitive aspect of biomolecular systems.
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