Knowledge Evolution in a Dynamic Environment

of RoboCup Simulation

T. Nakashima, H. Ishibuchi
Graduate School of Engineering
Osaka Prefecture University

1-1 Gakuencho, Sakai, Osaka 599-8531, Japan

{nakashi, hisaoi}@cs.osakafu-u.ac.jp

Abstract

In this paper we examine the performance of the
evolutionary algorithm for a dynamic environment
where the opponent team changes during the evolution
of strategies. In the dynamic environment, the dash
power of opponent players in ball intercept behavior
is adjusted. We consider two adjustment modes of the
dash power in our experiments. In one mode the dash
power of the opponent players is gradually increased
over generation of the evolutionary algorithm. The
other mode monitors the performance of the evolved
team strategies to increase or decrease the dash power
of opponent players accordingly. We compare the evo-
lution of team strategies between the two modes and
discuss for the future extension to the current exper-
imental settings. We also discuss the possibility of
knowledge extraction from the obtained team strate-
gies by the evolutionary algorithm.

1 Introduction

RoboCup soccer is a competition between soccer
robots/agents. Its ultimate aim is to win against the
human soccer champion team by the year 2050 [1].
Developing RoboCup teams typically involves solv-
ing the cooperation of multiple agents, the learning
of adaptive behavior, and the problem of noisy data
handling. Many approaches have been presented that
try to tackle these problems, an example is the appli-
cation of soft computing techniques.

In this paper we examine the performance of the
evolutionary algorithm for a dynamic environment
of RoboCup simulation where the opponent team
changes during the evolution of strategies. In the dy-
namic environment, the dash power of opponent play-
ers in ball intercept behavior is adjusted. We consider

M. Nii
Department of Computer Engineering
University of Hyogo

2167 Shosha, Himeji, Hyogo 671-2201, Japan

nii@eng.u-hyogo.ac. jp

two adjustment modes of the dash power in our ex-
periments. In one mode the dash power of the op-
ponent players is gradually increased over generation
of the evolutionary algorithm. The other mode moni-
tors the performance of the evolved team strategies to
increase or decrease the dash power of opponent play-
ers accordingly. We compare the evolution of team
strategies between the two modes and discuss for the
future extension to the current experimental settings.
We also discuss the possibility of knowledge extraction
from the obtained team strategies by the evolutionary
algorithm.

2 Team Setup

We use the following action rules to determine
player’s action

R;: If Agent is in Area A; and
the nearest opponent is B; (1)
then the action is Cj, j=1,...,N,

where R; is the rule index, A; is the antecedent inte-
ger value, B; is the antecedent linguistic value, Cj is
the consequent action, and N is the number of action
rules. In this paper we evolve action rule sets to find
a competitive soccer team strategy.

The antecedent integer value A;, j = 1,..., N refers
to a subarea of the soccer field. We divide the soccer
field into 48 subareas as in Fig. 1.

Each subarea is indicated by an integer value. The
antecedent value A; of the action rule R; is hence an
integer value in the interval [1,48]. In this paper 12
actions are available for the consequent action C}.

Note that each player has a set of action rules. Since
there are 48 subareas in the soccer field and near and



1:7 13 19 25 31 37 43

2: 8 14 20 26 32 38 44

39 15 21/

41 10 16 22

28 34 40 {46

i1 17 23 29 35 41 47

6 12 18 24 30 36 42 48]

Figure 1: Soccer field

not near are available for the second antecedent part
in action rules (i.e., B;), the number of action rules
for a single player is 48 x 2 = 96. There are 96 x 10 =
960 action rules in total for a single team with ten
field players. Action rules for a goal keeper are not
considered in this paper.

If the ball cannot be kicked by a player, there are
two kinds of actions. One is ball intercept where the
player move toward the ball in order to be able to kick
it. The other action is positioning where the agent
keep its position that is determined from the ball po-
sition and its home position. The player determines
which action to take based on the positional relation
among all the objects including teammates, opponent
players, and the ball.

3 Evolutionary Computation
3.1 Encoding

The action of the agents is specified by the action
rules in (1) when they keep the ball. Considering that
the soccer field is divided into 48 subareas (see Fig. 1)
and the position of the nearest opponent agent (i.e., it
is near the agent or not near) is taken into account in
the antecedent part of the action rules, we can see that
there are 48 x 2 = 96 action rules for each player. We
apply our evolutionary method to ten soccer agents
excluding the goal keeper. Thus, the total number of
action rules for a single team is 96 x 10 = 960. We
use an integer string of length 960 to represent a rule
set of action rules for ten players. The task of our
proposed evolutionary method is then to evolve the
integer strings of length 960 to obtain team strategies
with high performance.

On the other hand, the actions of the agent in the
case where the nearest opponent agent is not near the
agent are shown in the other 48 integers. The value
of each integer ranges from an integer interval of [1,
12] as the number of possible actions for each rule is
twelve.

3.2 Dynamically Changing Opponent

In our previous studies on the evolutionary com-
putation for RoboCup soccer, the opponent team was
fixed during the course of the evolutionary algorithm.
Obtained strategies by the evolutionary algorithm are
therefore able to successfully perform against the fixed
opponent team. However, it is not neccessarily said
that the obtained strategies are successfully able to
play the soccer game against different team strategies
as successfully as against the fixed opponent team. In
this paper we consider a dynamically changing envi-
ronment in order to solve this problem.

In our implementation of the dynamically chang-
ing environment, dash power is used as a parameter of
dynamically changing opponent strategies. The higher
the dash power of opponent agents is, the harder it is
for evolutionary teams to defeat the opponent team.
In the beginning of the evolutionary algorithm the
dash power of the opponent is zero and linearly in-
crease as the number of generations increases.

3.3 Evolutionary Operation

We use one-point crossover, mutation, and ES-type
selection as evolutionary operations in our evolution-
ary method. New integer strings are generated by
crossover and mutation, and selection is used for gen-
eration update.

In the crossover operation, we first randomly select
two integer strings. Then latter part of both strings is
exchanged with each other from a randomly selected
cut-point. Note that we do not consider any evalua-
tion results when two integer strings for the crossover
operation are selected from the current population. In
the mutation operation, the value of each integer is
replaced with a randomly specified integer value in
the interval [1, 12] with a prespecified mutation prob-
ability. It is possible that the replaced value is the
same as the one before the mutation operation. It
should be noted that new integer strings generated by
the crossover and the mutation operations do not have
their match history. Thus the fitness evaluation of the
new integer strings are made by using the game result
of only a single game.

Generation update is performed by using ES-type
selection in our method. We use a so-called (p + A)-
ES [3] for our generation update scheme. By iterating
the crossover and the mutation operations we produce
the same number of new integer strings as that of cur-
rent strings. Then the best half integer strings from
the merged set of the current and the new strings are
chosen as the next population. The selection is based



on the match results. Note that the current strings
are also evaluated in this selection process. Thus, it
is possible that a current integer string with the best
performance at the previous generation update is not
selected in the next generation update because the av-
erage goals of the integer string after the next perfor-
mance evaluation may become lower if the result of
the game at the next evaluation is poor.

To summarize, our proposed evolutionary method
is written as follows:
[Procedure of the proposed evolutionary
method]

Step 1. Initialization. A prespecified number of in-
teger strings of length 960 are generated by
randomly assigning an integer value from the
interval [1, 12] for each integer.

Step 2. Generation of new integer strings. First ran-
domly select two integer strings from the cur-
rent population. Then the one-point crossover
and the integer-change mutation operations
are performed to generate new integer strings.
This process is iterated until a prespecified
number of new integer strings are generated.

Step 3. Performance evaluation. The performance of
both the current integer strings and the new
integer strings generated by Step 2 is evalu-
ated through the results of soccer games. Note
that the performance of current integer strings
is also evaluated every generation because the
game results are not constant but different
game by game.

Step 4. Dynamic environmental change. The dash
power of the opponent team is increased. The
schedule of the change of the dash power is
make so that at the first generation it is zero
and becomes full (i.e., 100%) at the final gen-
eration.

Step 5. Generation update. From the merged set of
the current integer strings and new ones, se-
lect best integer strings according to the per-
formance evaluation. In the performance eval-
uation goals for are used as the first criterion.
If multiple individuals have the same goals
for, then goals against are used as the second
performance criterion. The selected integer
strings form the next generation.

Step 6. Termination of the procedure. If a prespeci-
fied termination condition is satisfied, stop the
procedure. Otherwise go to Step 2.

4 Computer Simulations

The following parameter specifications were used
for all the computer simulations in this paper:

The number of integer strings in a population: 5,
The probability of crossover: 1.0,

The probability of mutation for each integer: 5/96,
Generation update: 500.

The population size is specified as five. This is a small
number comparing to commonly used parameter spec-
ifications. This is because it takes at least five min-
utes to complete a single soccer game. If the popu-
lation size is specified large, it is difficult to perform
the evolutionary method for a large number of gener-
ations. Currently we use a 16-node cluster system for
the computational experiments in this paper. It still
takes several days to perform a single run of the evolu-
tionary process. The population size will be increased
when more powerful computational environments are
equippped.

We show the evolution of the soccer teams in Fig. 2.
Total scores of goals for and goals against are plotted
in Fig. 2. From this figure we can see that the offensive
performance degrades as the evolution proceeds as the
dash power of the opponent teams increases during the
course of the evolution.

Goals for

Total goals
>

Goals against
o ul Lo

0 100 200 300 400 500
Generations

Figure 2: Performance of evolutionary teams.

Now we closely investigate obtained strategy by the
evolutionary algorithm. Figure 3 shows the trajectory
of the ball by an individual at the initial population.
We can see from Fig. 3 that the ball is somewhat kicked
randomly at different directions. This is because the
initial individual was generated by randomly assigning
an action to each action rule. Next we show in Fig. 4
the trajectory of the ball by an individual at the fi-
nal population (i.e., at the 500-th generation). From



Fig. 4, we can see that the evolved team obtained of-
fensive knowledge where the side forward drives the
ball toward the opponent area from the side of the field
and place the ball to the center when the ball is near
the opponent goal. This strategy is intuitively under-
standable because human soccer teams normally take
this strategy. It is shown that the evolutionary algo-
rithm automatically obtained the human-like strategy
from the initial population that was randomly gener-
ated.

Figure 3: Ball trajectory at the first generation.

Figure 4: Ball trajectory at the final generation.

5 Conclusions

In this paper we proposed an evaluation method of
soccer team strategies by using match history. The
match history is used to calculate the average goals
and the average goals against. Those teams with high
average goals are evaluated as better than those with
low average goals. The average goals against are used
when the average goals are the same among more than
one soccer team strategies. This method avoids the
problem caused by uncertainty in the RoboCup soc-
cer such as noise in object movement and the sensing
information.

In the evolutionary process of this paper the action
of soccer players that keep the ball is determined by
a set of action rules. The antecedent part of the ac-
tion rules includes the positions of the agent and its
nearest opponent. The soccer field is divided into 48
subareas. The action of the agent is specified for each
subareas. The candidate actions for the consequent
part of the action rules form a set of 12 basic actions
such as dribble and kick. The strategy of a soccer
team is represented by an integer string of the conse-
quent actions. In the evolutionary process, one-point
crossover, replacement mutation, and ES-type gener-
ation update are used as evolutionary operators. The
generation update is performed in a similar manner
to the (p + A)-ES of evolution strategy. That is, the
best integer strings are selected from a merged set of
current integer strings and new integer strings that
are generated from the current integer strings by the
crossover and mutation operations. The performance
of the soccer team strategies becomes better over gen-
eration. For example, the average goals at the end
of the evolution process is larger than in the initial
population. We also observed that the average goals
against did not increase as the evolutionary computa-
tion progressed.

In a series of computer simulations, we exam-
ined the performance of our evaluation method. We
showed that the evolutionary algorithm automatically
obtained a human-like strategy from random strate-
gies through the process of evolutional trial-and error.

This paper focused on offensive strategy rather than
defensive one. Developing a method for the defensive
strategy is left for our future work.

Acknowledgment

This work was partially supported by Grant-in-Aid
for Scientific Research on Priority Areas: KAKENHI
(18049065) and KAKENHI (1770241).

References

[1] RoboCup official page, http://www.robocup.org/.

[2] T. Nakashima, M. Takatani, M. Udo, H. Ishibuchi,
and M. Nii, “Performance Evaluation of an Evolu-
tionary Method for RoboCup Soccer Strategies,”
RoboCup 2005: Robot Soccer World Cup IX, in
press.

[3] T. Béck, Evolutionary Algorithms in Theory and
Practice, Oxford University Press, New York,
1996.



