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Abstract
Periodic gaits of passive dynamic waking are found

by solving nonlinear dynamic equations, and the con-
vergence speed of numerical solving of the equations
is greatly affected by the choice of initial values. This
paper investigates the iterative searching algorithm for
periodic gaits by studying the simplest passive dy-
namic walking model. An improved algorithm for
choosing the initial values is proposed based on the
work of Garcia etc. The effectiveness of the proposed
algorithm is demonstrated by numerical simulations.

1 Introduction

Why can human walk? One may focus on the con-
trol of nerve and muscle but relatively neglect other
important factors. Passive dynamic walking proposed
by McGeer [1] presented a novel idea.

Passive dynamic walker is a simple mechanism nor-
mally composed of some solid links connected by fric-
tionless hinges. Without motors and controllers, it can
walk down a small slope stably by gravity and have a
human-like gait.

The key to analyze passive dynamic walking is to
find periodic gaits, normally by numerically solving
nonlinear differential equations with iterative method
like Newton-Raphson method [2]. The iterative
method first selects a set of initial values, then searches
directly in the solution space whose dimension is rela-
tively high for the fixed points of the equations. The
choice of the initial values is quite important since it
directly affects the convergence and the convergence
speed of the iterative method, but how to choose the
initial values is still a problem. Garcia et al. [3]
had developed a method to solve this problem. They
first got a low-order approximation to the equations,
solved them for the analytical solutions which could
be used as the initial values of the iterative method.

This method works well when the equations are sim-
ple but involves some complicated symbolic manipu-
lation. This article proposes an improved algorithm
which searches in the parameter space whose dimen-
sion is relatively low instead of the solution space. The
effectiveness of the algorithm is demonstrated by nu-
merical simulation and comparison with the original
algorithm.

2 Model

The model used here is the simplest walking model
proposed by Garcia et al. [3], which is shown in Fig-
ure 1.

Figure 1: The simplest model of passive dynamic walk-
ing

Assumptions of the model are:
1 Mass: The only mass is at the hip and the feet,

and the foot mass m is much smaller than the hip mass
M , satisfying β = m

M → 0.
2 Actuator: No actuators are used.



3 Collision: When the swing foot hits the ground,
the collision is completely inelastic (no slip or bounce)
and the double support phase is instantaneous (the
stance foot leaves the ground when the swing foot hits
the ground).

4 Ground: The swing foot may be below the ground
level during the swing phase. To solve this problem,
we allow the swing foot to move below the ground in
numerical simulation and use a chessboard-like ground
for real-world experiments.

According to Lagrange function, equations of the
motion for the swing phase are
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and the relation of the velocities before and after the
collision can be written as follows according to the
angular momentum conservation
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where q = (u, v, θ, φ)T is the configuration of the
model, x = F (q) the coordinates of the hip and the
feet, g (q) = 0 the constraints of the ground, M the
general mass matrix, f the force vector, λ, ρ the

Lagrange multipliers, and M̄ =
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We define the start of a stride as the moment the
swing foot hits the ground and the stance foot leaves
the ground, which is also the end of the last stride.
The state at this moment is the initial state of the
model, which is v =

(
θ, θ̇, φ̇

)T

. A Stride Function

vk+1 = S (vk) is a map from the state of the kth stride
to the state of the (k + 1)th stride.

3 Search of the Fixed Points of the
Equation

A periodic gait corresponds to a fixed point of the
Stride Function, which is normally found by iterative
method. If an initial value v satisfies the equation
v = S (v), it is a fixed point of the Stride Function
S, otherwise the iterative method should modify the
initial value by ∆v to make the modified value satisfy
v + ∆v = S (v + ∆v). Since we can’t explicitly write

the expression of S (v + ∆v), we use the first-order
approximation

S (v + ∆v) ≈ S (v) + J∆v, where J =
∂S
∂v

(3)

then we get

∆v = (I − J)−1 (S (v)− v) (4)

The iterative method can be described as

repeat

∆v = (I − J)−1 (S (v)− v)
v = v + ∆v
until |S (v)− v| < ε

(5)

This is the Newton-Raphson method.

4 Improvement of the Search of the
Fixed Points of the Equation

Since we use the first-order approximation to the
Stride Function, the initial value v should be near the
fixed point. In a stride, the swing foot first moves
below the ground level, then moves above it, and then
moves downwards and hits the ground. If the initial
value is far from the fixed point, the swing foot may
not be able to move above the ground level, and the
collision may not occur. Since we can’t get the state
after heel-strike, S (v) and Jacobian matrix J can’t be
obtained. In a word, the initial value should guarantee
that at least one heel-strike can happen.

To solve this problem, we propose an improved
method. We assume that if the parameters of the
model change slightly, the fixed point will not change
too much. Based on this assumption, a fixed point
for one set of parameters can be used as the initial
value for another set of parameters if these two sets
of parameters are near together. On the other hand,
an initial value not suitable for one set of parameters
may be a good choice for another set of parameters.
Based on the above observation, we propose an im-
proved method as follows:

1. Given a slope angle γ, choose an initial value v;
2. Search for the fixed point using Newton-Raphson

method; if not found, jump to 3;
3. Keep the initial value v unchanged, let γ = γ +

∆γ, and use Newton-Raphson method again; modify
∆γ until the fixed point is found. Let the found slope
angle be γ∗ and the fixed point v∗;

4. Use v∗ as the initial value, let γ∗ = γ∗ + ∆γ,
search for the fixed point. Modify the slope angle by



∆γ at a time, and search for the fixed point using
the fixed point with the slope angle unchanged as the
initial value. Repeat until γ∗ = γ.

The dimension of the parameter space is 1 while
the dimension of the state space is 3. The improved
method searches in the parameter space instead of the
state space, making the search easier.

5 An Example of the Algorithm

To demonstrate the effectiveness of the algorithm,
we first give a plot of the fixed points versus the slope
angles, see Figure 2. The same result was shown by
Garcia et al. [4] too.
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Figure 2: Fixed points of the stride function

We give an example here to demonstrate that the
improved method can find the fixed point even when
the initial value is not suitable.

1. Given a slope angle γ = 0.016[rad], choose an

initial vale v =
(
θ, θ̇, φ̇

)T

= (0.1,−0.01,−0.002)T ;
2. Search for the fixed point using Newton-Raphson

method; we can’t find the fixed point after 80 itera-
tions;

3. Keep the initial value v unchanged, let γ = γ −
0.001[rad] , and use Newton-Raphson method again;
we find the fixed point

v =
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when γ = 0.013[rad];

4. Use the fixed point when γ = 0.013[rad] as
the initial value, search for the fixed point when γ =
0.014[rad]; Use the fixed point when γ = 0.014[rad]
as the initial value, search for the fixed point when
γ = 0.015[rad]; finally we get the fixed point when γ =
0.016[rad] using the fixed point when γ = 0.015[rad]
as the initial value
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.
The procedure is shown in Table 1.

slope angle
γ (rad)

initial value
θ (rad)

fixed point
θ (rad)

0.016 0.1 not found
0.015 0.1 not found
0.014 0.1 not found
0.013 0.1 0.2259204891316
0.014 0.2259204891316 0.23144913545946
0.015 0.23144913545946 0.23671218331329
0.016 0.23671218331329 0.24173855862323

Table 1: An Example of the Algorithm

6 Conclusion

This paper investigates the iterative searching algo-
rithm for periodic gaits by studying the simplest pas-
sive dynamic walking model. An improved algorithm
for choosing the initial values is proposed based on the
work of Garcia etc. The effectiveness of the proposed
algorithm is demonstrated by numerical simulations.
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