
Adaptive Control of a Looper-like Robot based on the CPG-Actor-Critic Method

Kenji Makino∗ Yutaka Nakamura† Tomohiro Shibata∗ Shin Ishii∗

∗ Graduate School of Information Science
Nara Institute of Science and Technology (NAIST)
8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
† Graduate School of Engineering, Osaka University

Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan

Abstract

Adaptability to the environment is crucial for mo-
bile robots, because the circumstance, including the
body of the robot, may change. A robot with a large
number of degrees of freedom possesses potential to
adapt to such circumstances, but it is difficult to de-
sign a good controller for such a robot. We previ-
ously proposed a reinforcement learning (RL) method
called the CPG-actor-critic method, and applied it to
automatic acquisition of vermicular locomotion of a
looper-like robot through computer simulations. In
this study, we developed a looper-like robot and ap-
ply our RL method to the control of this robot. Ex-
perimental results demonstrate fast acquisition of a
vermicular forward motion, supporting the real appli-
cability of our method.

1 introduction

To realize a mobile robot that acts in a real environ-
ment, adaptability to changes in the environment due
to its dynamic nature and various disturbances is nec-
essary. Reinforcement Learning (RL) is a framework
for autonomous acquisition of control rules and has
been successfully applied to various automatic control
problems [1]. Because real robots often have a large
number of degrees of freedom (DOF), RL methods to
control them need some devices to avoid the problem
of ”curse of dimensionality”.

Motivated by the animal’s control mechanism for
rhythmic locomotion, which is induced by neural cir-
cuits in the spinal cord of vertebrates called central
pattern generators (CPGs), robot control schemes us-
ing a CPG controller have been studied mainly in the
field of robotics [2][3]. Because the parameter of the
CPG controller is designed such that the CPG con-
troller and the robot interact with each other and are

eventually entrained into a stable limit-cycle attrac-
tor, the robot controlled by a CPG controller is robust
against possible disturbances from the environment.

Although there have been some studies of designing
a CPG controller, autonomous learning framework for
a CPG controller is necessary to realize the adaptabil-
ity to dynamic nature of the environment including
its own body. We formerly proposed an RL frame-
work called the CPG-actor-critic model for designing a
CPG controller [4]. Since control signals are restricted
to be rhythmic in favor of the CPG, this RL method
would be able to avoid ”curse of dimensionality”. In
this method, the parameter of the CPG controller is
updated according to the gradient of the performance
indicator, the average reward per step for example,
with respect to the parameter (policy gradient) and
this gradient can be obtained by interaction with the
environment. After learning, the CPG controller be-
comes to generate stable locomotion suited to the en-
vironment surrounding the robot.

In the current study, we configure a real looper-like
robot and its CPG controller. Because a looper has
an ability to move by many of simple and rhythmic
telescopic motions, a looper-like robot would have an
adaptability to various environments. In our previ-
ous study, we showed through computer simulations
that a good CPG controller can be obtained by the
CPG-actor-critic method [5]. In real environments,
however, there may arise much difficulty; e.g., it is dif-
ficult to approximate contact between the robot and
ground, outputs of sensors generally include unknown
noise and time delays. In this study, we apply the
CPG-actor-critic method to the real looper-like robot
we have developed, for achieving automatic acquisition
of “vermicular” locomotion.



2 Robot System

Looper-like robot
The looper-like robot we have developed is depicted

in Fig.1. This robot is composed by three links,
eight actuators and six passive wheels. The first to
fourth actuators are linear actuators which are each
located between two links, and used to expand-and-
contract the body of the robot. We call these actua-
tors body actuators. The length of these actuators
is about 13cm at minimum and about 18cm at maxi-
mum. Black semicircles in Fig.1 denote the ball joint,
so that the body of the robot bends when lengths of
these actuators are different from one another. The
fifth to eighth actuators are also linear actuators which
are located to the head or tail link. They move verti-
cally to clamp corresponding links to the ground. We
call these actuators leg actuators.

In order to make the robot move forward, it is
required to repeat expand-and-contract motions, by
clamping the head link and the tail link in an appro-
priate but different timing.

CPG controller
Because a looper-like robot has a substantial po-

tential to move by a rhythmic locomotion, we employ
a CPG controller [5] which outputs rhythmic control
signals. As shown in Fig. 2, the CPG controller com-
prises three neural oscillators each of which consists
of two neurons, and each actuator is controlled by a
single neural oscillator. The (2i− 1)-th and the 2i-th
neuron’s dynamics are defined as

1
c ẏ2i−1 = −y2i−1 + tanh(W sy2i−1 + W Iy2i + ui)

1
c ẏ2i = −y2i + tanh(−W Iy2i−1 + W sy2i)

, (1)

where y2i−1 and y2i denote the (2i − 1)-th and the
2i-th neuron’s states, respectively. WS , W I and c
are the self-excitatory connection weight, the mutual
inhibitory connection weight and the time constant,
respectively. ui is an input to the i-th neural oscilla-
tor, in this study, calculated as the weighted sum of
the robot’s state variable x and the output of the CPG
controller y: as ui = θjy0+· · ·+θkx0+· · · . Each neural
oscillator outputs sinusoidal control wave whose ampli-
tude and frequency are mainly determined by WS and
W I , and c, respectively. The phase relation between
the neural oscillators and the robot are determined by
the input to the CPG neurons u, i.e., the phase can
be tuned by changing the weight parameter θ of the
CPG. In this study, this weight parameter θ is trained
by the CPG-actor-critic method (see below).

Tail 

link

Center

link

Head 

link

Leg actuator
Body actuator

Leg actuator

Wheel

Side view

Top view

1

8

7

6

5

4

3

2

Ball joint

Figure 1: Looper-like robot

Control signal

State

u

s=(x,y)

CPG Controller

Figure 2: Control scheme using a CPG controller

3 Learning method
Here, we describe our RL algorithm for the CPG

controller, which we formerly proposed and called the
CPG-actor-critic model [5]. In this controlling by a
CPG controller, the control signal depends not only
on the state of the target system, but also its own
state, because the CPG controller has its own dy-
namics. This is problematic because most RL algo-
rithms assume the target policy is stationary (time-



independent), and furthermore, heavy computation
would be required for training recurrent neural net-
works like the naive CPG controller. In order to over-
come these difficulties, the CPG controller is divided
into two parts, the basic CPG and the actor [4]. The
basic CPG is a part of the CPG controller with fixed
connection parameters, i.e., W I , WS , and c are fixed.
We treat the physical system and the basic CPG as
a single dynamical system to control, and we call this
system a CPG-coupled system.

Since the actor turns out to be a feed-forward neu-
ral network having no its own dynamics in the CPG-
coupled system, we can easily apply usual RL algo-
rithms. The control signal u for the CPG-coupled
system is conceptually represented as

u ∼ π(u, s), (2)

where π denotes the control policy of the actor and
s ≡ (x,y) is a state of the CPG-coupled system. For
the sake of simplicity, we assume that Eqs. (1) and
(2) are discretized in time by an appropriate method,
and the learning system receives an immediate re-
ward r(s(t),u(t)) at a discrete time step t. The policy
πθ(s,u) is defined by a parametric stochastic policy,
i.e., the probability of a control signal u at a state s is
given by p(u|s; θ), where θ is a parameter vector of the
policy. The objective of RL here is to obtain the policy
parameter that maximizes the expected reward accu-
mulation defined by ρ(θ) ≡ Eθ[

∑
t γt−1r(s(t),u(t))],

where γ ∈ (0, 1] is a discount factor. The partial dif-
ferential of ρ(θ) with respect to the policy parameter
θi is calculated [6][7] as

∂ρ(θ)
∂θi

= 〈ψi(s,u)Qθ(s,u)〉, (3)

where ψi(s,u) ≡ ∂
∂θi

ln πθ and Qθ(s,u) denotes the
action-value function (Q-function). 〈·〉 stands for the
expectation with respect to the stationary distribu-
tion of the state-action pair (s,u). When the Q-
function is approximated by a weighted sum of base
functions ψ : Qw

θ ((s,u)) ≡ ∑
i wiψi(s,u), where w

is the weight vector of the approximate Q-function,
the optimal weight in the least square sense, w̃ =
arg minw〈(Qθ(s,u)−Qw

θ (s,u))2〉, provides the natural
policy gradient with no estimation bias for the gradi-
ent, so that the policy parameter can be updated [1]
as

θi := θi + ηw̃i, (4)

where η is the learning rate. the optimal weight w̃
is thus estimated simultaneously based on the least
square method [4][1].

4 Experiment

Setup
The aim of the experiment have is to examine if

our RL can be applied to a real looper-like robot, we
then conducted an experiment attempt to obtain a
controller which allows the looper-like robot to move
in the forward direction. For the simplicity of the ex-
periment setting, all body actuators were controlled
by a single neural oscillator, and front leg actuators
(5-th and 6-th actuators) and hinder leg actuators
(7-th and 8-th actuators) were controlled by a single
neural oscillators, respectively. The output signal τ to
these actuators is defined by

τi =

{
1, y2i−1 > 0
0, otherwise .

When τi = 1(0), the corresponding actuator expands
(contracts). The control signal u to the CPG-coupled
system is defined by

u1 = θ1X1 + θ2X2 + ε1
u2 = θ3y1 + θ4y2 + ε2
u3 = θ5y1 + θ6y2 + ε3

, (5)

where X = {x2 − x3 − l, ẋ2 − ẋ3}, x2 and x3 denote
the position of the head link and that of the tail link,
respectively. εi(i = 1, 2, 3) is a small random noise
obeying a normal distribution. l denotes the mean
length between the head link and the tail link. The
policy parameter θ determines phase relations among
the robot and the neural oscillators and was adjusted
by RL. WS , W I , and c which are CPG system pa-
rameters were fixed at 1.1, 0.7, and 4.0, respectively.

The immediate reward r(s(t)) was given by

r(s(t)) = ẋ1,

where x1 denote the position of the center link. Be-
cause the robot currently possesses no sensors to mea-
sure its position, an USB camera is placed above the
experimental field.

We chose the state representation for RL as fol-
lows. Because the phase portrait between two neu-
rons presents a circle whose center is the origin, the
angle ω1 = arctan(y2/y1) carries the essential fea-
ture of the first neural oscillator. Similarly, ω2 =
arctan(y4/y3) and ω3 = arctan(y6/y5) should be use-
ful features of the second and the third neural oscil-
lators, respectively. Furthermore, when the looper-
like robot repeats expansion and contraction, ω4 =
arctan((ẋ3 − ẋ2)/(x3 − x2)) is also an important fea-
ture of the robot’s movements. Because the phase dif-
ference seemed to be more important than the phase



0 20 40 60 80 100
-0.02

0

0.02

0.04

0.06
average reward

learning episodes

Figure 3: Learning curve. The horizontal axis denotes
the number of learning episodes, and the vertical axis
denotes the average reward in one episode. The line
shows the moving average over 30 episodes.

in this experiment, we employed 49 basis functions for
the approximate state-value function: φ16(i−2)+j(s) =
exp(−3 cos(ωi−ω1 +π/16j)−1) for i = 2, 3, 4 and j =
1, 2, ..., 16 and φ49 = 1. At the beginning of an episode,
the learning parameter was initialized at random: θ =
{0.0006, 0.0001, 0.0012,−0.0005,−0.0004, 0.0011}. In
each episode during the training, the robot was con-
trolled by the current actor for 45 sec.

Result
Fig.4 shows the learning curve, indicating that ap-

propriate control was achieved after about 10 training
episodes. Fig.5 shows actual movements of the looper-
like robot before learning and after learning(after 100
learning episodes). Before learning, the robot acciden-
tally moved backward first, and then started to move
forward slowly. After learning in contrast, the robot
became to move forward much faster. After the learn-
ing 100 episodes, the CPG parameters grew as: θ =
{0.0007,−0.0064,−0.0027,−0.0011,−0.0102, 0.0017}.

5 Conclusion

In this study, we have configured a CPG-based con-
trol architecture for a real looper-like robot, and ap-
plied RL to obtain a controller for the robot to move
in the forward direction. The experiments showed
that a good CPG controller for this robot can be effi-
ciently obtained by our RL method. Applying our RL
method to many other situations including changes in
the ground condition and changes in its body, for ex-
ample, is our future work.

position(pix cel)

Figure 4: Control result, showing the location of the
position of the robot’s center.

References
[1] J. Peters, S. Vijayakumar and S. Schaal: ”Rein-

forcement learning for humanoid robotics”, Third
IEEE International Conference on Humanoid
Robotics 2003, Germany (2003).

[2] G. Taga, Y. Yamaguchi and H. Shimizu: ”Selfor-
ganized control of bipedal locomotion by neural os-
cillators in unpredictable environment”, Biological
Cybernetics, 65, pp. 147.159 (1991).

[3] Y. Fukuoka, H. Kimura and A. H. Cohen: ”Adap-
tive dynamic walking of a quadruped robot on ir-
regular terrain based on biological concepts”, In-
ternational Journal of Robotics Research, 22, 3.4,
pp. 187.202 (2003).

[4] Y. Nakamura, T. Mori and S. Ishii: International
conference on parallel problem solving from nature
(PPSN VIII), pp. 972.981 (2004).

[5] Y. Nakamura, T. Mori, S. Ishii: ”Natural pol-
icy gradient reinforcement learning method for a
looper-like robot”, International Symposium on
Artificial Life and Robotics (AROB 11th ’06),
GS3-3. (2006)

[6] V. R. Konda and J. N. Tsitsiklis: ”Actor-critic
algorithms”, SIAM Journal on Control and Opti-
mization, 42, 4, pp. 1143.1146 (2003).

[7] R. S. Sutton, D. McAllester, S. Singh and Y.
Manour: ”Policy gradient method for reinforce-
ment learning with function approximation”, Ad-
vances in Neural Information Processing Systems,
Vol. 12, pp. 1057.1063 (2000).


