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Abstract
This paper describes a visuo-motor system which

realizes a feasible collusion avoidance of a manipu-
lator in an unknown environment. In order to han-
dle spaces occluded by obstacles, we adapt the plu-
ral cameras system and multiple self-organizing maps
(SOMs).Each self-organizing map is directly connected
to the camera system and trained to perform motion
control, by which the joint angle of the manipulator
are determined. In our visuo-motor system, neither
any priori knowledge about the manipulator nor the
camera parameters are required. In addition, the sys-
tem is robust to change in its geometry. Simulation re-
sult shows that the proposed learning method ensures
that the manipulator moves smoothly and consistently
in whole workspace even using multiple maps. In this
paper, we validated the proposed approach by an ex-
periment and confirmed that proposed method real-
izes collision avoidance for the visio-motor system in
a 3D space. Thus, we presented simulation result that
the system overcomes the collusion problem in clut-
tered environments and variety of obstacle shapes by
increasing the number of cameras and self-organizing
maps.

1 introduction

Collusion avoidance is a basic problem that a robot
handles its end-effector avoiding obstacles cluttered in
an environment performing the primary task for au-
tonomous or industrial robots. To plan a path avoid-
ing collision in an intricate environment, two contrast-
ing approaches have been studied.

First, the high-level path planning is to find globally
a collision avoidance path in the configuration space.
One example of a global method is PRM (Probabilis-
tic Roadmap Method) that computes a cell decompo-
sition of the free space and uses a search graph based
on this decomposition [1]. RRT (Rapidly-exploring

Random Trees) is a roadmap method where a set of
canonical paths is used to cover the components of
the free space, and the planning task is reduced to
determine a connection to the canonical paths [2, 3].
However, in these approaches, an exact, known and
static environment model is required. In addition, the
calculation time grows exponentially with the geome-
try complexity and the number of degree of freedom
(DOF).

Therefore, local path planning techniques are po-
tentially more efficient in robot motion planning when
the environment is unknown of only partially known.
An efficient local path planning method is the poten-
tial field method which has been widely used in colli-
sion avoidance [4]. In this method, a potential func-
tion is defined in the free space, based on an attraction
component from the goal point and a repulsion compo-
nent from the obstacle boundaries, and the planning
process becomes to a determination of the global min-
ima of the potential function using a greedy and local
search.

Alternatively, obstacle avoidance can be solved on-
line by a robot controller at the low-level, which is fo-
cused on the problem of controlling a redundant robot
so that the end-effector tracks a given path in the
workspace as closely as possible and simultaneously
ensures that the links avoid obstacles. Reasoned as
above, such techniques naturally depend on the use of
different control frameworks [5, 6].

On the other hand, some methods tried to inte-
grate a task planning and a motion control, motivated
by Khatibs work [7]. This work and a few other in-
tegrated architectures [8] have utilized methods based
on potential fields in their reactive control algorithms,
while their planning and interface techniques differ [9].
The SOMs also can be used for path-planning or tra-
jectory formation tasks [10]. After the mapping has
been established, a path is generated from any initial
position to a given target, e.g., to guide an end-effector
of a robot manipulator in the presence of obstacles



within the workspace. Using the TRN model [11],
showed that a locally optimized path can be deter-
mined by minimizing the Euclidean distance from the
current position to a given target position. However, a
collision check was necessary in the path planning, and
the proposed method was only investigated by using a
non-redundant manipulator.

In our studies, we integrate the path planning of the
end-effector and SOMs to achieve collision avoidance.
The SOMs are learned to perform motion control, by
which joint angles of the manipulator are determined.
The learning promises to make the manipulator reach
targets precisely with obstacle-free poses. The path
planning system plans a collision-free path for the end-
effector from an initial point to a target point in the
image spaces. The proposed collision avoidance ap-
proach differs from others in: (1) The system only
needs to plan a collision-free path for the end-effector;
the computational cost of the path planning does not
increase exponentially even for a high dimensional re-
dundant manipulator. (2) The obstacle-free poses of
the manipulator are achieved in the learning of the
SOMs, so collision checking is not necessary in whole
path planning process.

2 visuo-motor system

Visuo-motor system which we propose is illustrated
in Fig.1. The system contains:
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Fig. 1: Simulation model

1. A 4-degree of freedom redundant manipulator
moving in a 3D space.

2. The plural CCD cameras.

3. Multiple related self-organizing maps.

CCD cameras are used to acquire information about
obstacles and to recognize the position of the target,
the location of the end-effector and the pose of the
manipulator while learning. Based on visual informa-
tion provides by cameras, each SOM learns projec-
tions that convert the image vectors of targets in the
image spaces into joint angles vectors of the manip-
ulator. The manipulator is ordered by a set of joint
angle commands θout which are outputs of SOMs.

In our previous works, the system could not deal
with spaces occluded by obstacles. In this paper, a
redundant camera system is introduced to overcome
the occlusion problem [13]. One camera observes the
workspace from the top and other cameras are ar-
ranged from the sides. Because the valid workspace
is increased obviously by adding the redundant cam-
era, multiple related SOMs are employed in our sys-
tem. As shown in Fig.1, the projections of a target
point ut in side cameras and top camera are (ui, vi)
and (ut, vt) respectively. A pair of image coordinates
of side camera (ui, vi) and top camera (ut, vt) is com-
bined into a 4 dimensional vector (ui, vi, ut, vt) which
is used as the point if one. In the same way, a pair of
the other side camera and top camera is combined into
the input of another map. Since the valid workspaces
of each map and camera are different, maps are used
alternately. Besides the number of joint, no further
information about the manipulator and cameras will
be used in our visuo-motor system.

2.1 The self-organizing maps

As shown in Fig.2, each self-organizing map is con-
sisted of neurons, which are distributed in the im-
age spaces of the camera. Each neuron Ni has 4-
parameters.

For ξi, refer to our previous study.

Wi : position of the neuron in two image spaces.

Ji : Jacobi matrix from the joint space to the image
spaces.

θi : Joint angle of the manipulator at Wi.

ξi : The gradiant vector.

When a target ut is given in the workspace, an appro-
priate map is chosen based on which cameras can see
the target. In the chosen map, the neuron which wi

is the nearest to the projection of the target is cho-
sen. The joint angles θout, which conduct end-effector
to the target, are calculated obeying following linear
equation. Although the transformation from the im-
age spaces to the joint angle spaces is not a linear pro-
jection for a redundant manipulator, the domain of a
neuron is small enough to use the linear projection as



Top Camera Side Camera

ut ut

: Neuron Image space

Fig. 2: Self-Organizing Map

an approximation of the non-linear projection. In the
actual system, weighted sum of outputs from plural
neurons around the target is used instead of the linear
equation.

θout =
∑

gn(θ + J†(ut −W ))∑
gn

(1)

Where,J† is a pseudoinverse matrix of J . gn is the
weight defined by the following equation.

gn =

{
exp(−n/λ) for exp(−n/λ) > ε

0 for exp(−n/λ) ≤ ε
(2)

Where, n is the order of the neuron determined ac-
cording to the distance between the neuron and the
target. It has a large value for the neuron that is near
to the target, and has a small value for the neuron
that is far from the target. The symbol λ and ε are
value to define neuron numbers that can affect θout.

3 Process

3.1 Learning procedure of the Self-
Organizing Map

In our system, plural SOMs are employed. If they
are learned separately, their outputs are different even
for the same target. This will result in that the ma-
nipulator moves inconsistently when it is driven from
valid workspace of one map to another. In the learn-
ing algorithm, the problem has to be solved effec-
tively. The problem also can be described as: the al-
gorithm should guarantee that the manipulator moves
smoothly and consistently in whole workspace no mat-
ter which SOM outputs joint angles for it.

The learning procedures illustrated in Fig.3. When
a target position ut is presented randomly in the
workspace, each camera sees the target. If a camera
can see the target, the SOM which is connected to the
camera will learn. While more than two SOMs learn

for a common visible target, they learn with influence
each other. In this case, one of SOMs is chosen to
determine the joint angles θout of the manipulator for
the target. The manipulator is driven by the θout, and
each camera obtains end-effector position v in each
SOM respectively. Then, each SOM corrects its pa-
rameters by using ut, θout and v. This learning proce-
dure results in that in the end of learning the neurons
of plural SOMs possess the similar value if θout, ξand
different W,J for the target given in the common vis-
ible space.

Thus, the outputs from either SOMs will ensure the
manipulator has the same pose. This means: while a
target is given in common visible parts, the outputs
from either SOMs do not result in a change of the ma-
nipulator pose. In addition, the assignment of similar
joint angles to adjacent target point is, in fact, one
of the main features of the learning algorithm of the
SOM. By the construction of a map between inputs
in the image space and the neural net, learning algo-
rithm makes sure that adjacent target points always
activate adjacent neuron in the network. The learning
forces adjacent neurons to adapt their output towards
similar values.

Therefore, at the end of the learning phase the out-
put values will very smoothly from a neuron to another
neuron. Both features bring about a continuous and
smooth transformation from the input image spaces of
target points to the out put space of joint angle sets.
According to such a learning algorithm, SOMs guaran-
tee smooth and consistent movements of the manipu-
lator in whole workspace. For detials about evaluation
function, learning algorithm and update of the param-
eter, refer to our previous paper [13].
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Fig. 3: Relation of Plural Self-Organizing Maps

3.2 Path planning

In our system, collision avoidance is based on the
idea, While projected path does not interfere with pro-



jected obstacle, the path in 3 dimensional space can
avoid the obstacle. Here collision avoidance is realized
in the image spaces. It is not required to reconstruct
a 3D model. Consequently collision avoidance in the
image spaces by combining a SOM and a path plan-
ning system. The SOM determine joint angles of ma-
nipulator so that the end-effector of the manipulator
reaches a target position given in the image spaces
arbitrarily, and also ensures the manipulator taking
obstacle-free poses. Here, the path planning system
adapts Laplaces potential method to plan a collusion-
free path for the end-effector from an initial to a goal
position without plagued into local minima.

Since the manipulator can drive the end-effector to
a target point given in the image spaces with obstacle-
free poses under control of the SOMs, the path plan-
ning system only needs to plan a path for the end-
effector of the manipulator. Accordingly, it is not nec-
essary to pay attention to the collision between obsta-
cles and links in the process of driving the end-effector
along the planed path. It is different from most of ex-
isting algorithm, which are intended to work in config-
uration space. Our system always plans paths in 2D
spaces, so the computational cost of planning does not
increase exponentially for a high dimensional redun-
dant manipulator. For procedure of the path planning
and path planning by Laplaces potential method, refer
to our previous study [12].

4 Simulation and experimental result
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Fig. 4: Outline of experimental system

A photograph and the outline of our system are re-
spectively shown in Fig.4 and Fig.5. The manipulator
is Mitsubishi Manipulator RV-1A. It is driven by us-
ing the operating signal θout which is received through

Fig. 5: Our experimental system

a Drive unit. The CCD cameras see the manipula-
tor and the outputs from cameras are lead to a frame
memory in the host computer. The size of the frame
memory is 640[pixel] × 480[pixel]. The SOMs are com-
posed in a host computer. LEDs, which are lighted by
the host computer, are set on joints so that the system
can find the position of the end-effector and links of
the manipulator in camera images. Cameras are also
used to get shapes of obstacles.

At first, by simulation, we will show that our system
can output joint angles using 3 CCD cameras and 2 re-
lated SOMs so that the end-effector of the manipulator
reaches to the target with obstacle-free poses, and that
the system accomplish collision avoidance using pro-
posed approach. Then, we will confirm reproductivity
of the system to experiment in actual environment.

Secondly, we will expend the system to increase
CCD cameras and SOMs and show that the system
makes the manipulator take obstacle-free poses and
accomplish collision avoidance.

Simulation results were shown in Fig.6 and Fig.7.
In the simulation, a SOM consisted 240 neurons was
used, and 15000 targets were given for learning. There
was one obstacle. Fig.6 shows the target positions and
the poses of the manipulator, when all cameras can
see the target after learning. In the figure, we can see
that the manipulator takes obstacle-free poses and the
end-effector reaches targets correctly. The average er-
ror of the end-effector position was 1.57[pixel]. Fig.7
illustrates planed path from initial to goal point and
manipulator poses driven by the SOMs without stop-
ping at local minima. The average error along planed
path was 3.06 [pixel].

An experimental result is shown in Fig.8 and Fig.9.
To shorten the learning time and confirm robustness
of the system, the SOMs of above simulation were
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Fig. 6: Output for manipulator by simulation
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Fig. 7: Output of collusion avoidance by simulation

used as initial state by experiment. The number of
re-learning time was 1500 and the time required pro-
cess was about 16,500[sec]. Similarly with Fig.6, Fig.8
shows target positions and poses of the manipulator
after re-learning. The average error of the end-effector
position was 1.57[pixel], and it was about 2[mm] in the
real environment. Also, Fig.9 illustrates the planed
path and the manipulator poses. The average of error
along planed path was 2.75[pixel].

By the simulation and experiments, we have veri-
fied that the system can make the manipulator take
obstacle-free poses and practice collision avoidance.

Next, simulation results, which are leaded from the
extended system, are shown in Fig.10 and Fig.11. In
the simulation, a SOM consisted 240 neurons was used,
and 30000 targets were given for learning. There was
one obstacle. Fig.10 shows the target positions and
the poses of manipulator, when all camera can see the
target after learning. In the figure, we can see that ma-
nipulator takes obstacle-free poses and the end-effector
reaches the targets correctly. The average error of the
end-effector was 1.74[pixel]. Fig.11 illustrates planed
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Fig. 8: Output for manipulator by experiment
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Fig. 9: Output of collusion avoidance by experiment

path from an initial to a goal point and the manipu-
lator poses driven by SOMs without stopping at local
minima. The average of error along planed path was
2.56 [pixel].

5 Conclusion

In this paper, we validated the proposed method ap-
proach by real experiment and confirm the efficiency
of the proposed method and robustness of the system.
Then, we extended the system by increasing number of
camera and SOM and showed the efficiency of the sys-
tem. Advantages of this approach are (1) By employ-
ing multiple SOMs alternately, the system overcomes
the occlusion problems in cluttered environment, (2)
In our visuo-motor system, neither any priori knowl-
edge about the manipulator nor the camera parame-
ters are required.

In the present system, when a target point is put
under obstacles and the top camera can not see it,
SOMs can not learn joint angles because of dependence
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Fig. 10: Output for manipulator in extended system
by simulation
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Fig. 11: Output of collusion avoidance in extended
system by simulation

on the top camera. Therefore, we have to extend the
system and make each camera independent.
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Japan.
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