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Abstract 
      This paper proposes a new learning rule of 
multi-layer neural network controllers in order to eliminate 
an inference of neural network weights of each layer and 
to discuss stability condition of nonlinear three layer 
neural network controllers. This learning rule is that the 
neural network weights between one layer and next layer 
are only changed at same time and other neural network 
weights are not changed, and after some sampling numbers, 
the neural network weights between other layer and next 
layer are changed.  The proposed learning rule is applied 
to an adaptive type neural network direct controller and a 
simulation result shows it performed well. 
 
1. Introduction 
 
      Many studies have been undertaken in order to 
apply both the flexibility and the learning capability of 
neural networks to control systems.[1]-[3]  However, 
there are few attempts to clear the stability conditions of 
neural network control systems.  Among these attempts, 
we proved local stability condition of a three layer neural 
network direct controller whose neurons have a linear 
input output relation.[1][2]  We also confirmed that the 
interference between neural network weight learning of 
each layer causes more difficulty to analyze the stability 
condition in comparison with the stability analysis of 
conventional adaptive controllers in this study.  This 
interference is caused by an usual neural network learning 
rule so as to change whole neural network weights at same 
time.  In other words, the usual neural network learning 
rule has good efficiency of the neural network weight 
convergence, but it causes difficult stability analysis of the 
neural network controllers.  One of simple methods to 
avoid this interference is to use a two layer neural network 
as a controller.  However, the nonlinear mapping 
capability of such neural network is limited because it was 
proved that a nonlinear three layer neural network was able 
to approximate any continuous nonlinear functions.  That 

is, this method means that such neural network controllers 
have less nonlinear mapping capability in comparison with 
the nonlinear three layer neural network.  Another 
method  to avoid above problem is to use a linear three 
layer neural network.  However, the linear three layer 
neural network can not realize sufficient approximation for 
nonlinear functions.  This also means that such neural 
network controllers have less nonlinear mapping 
capability. 
     Thus, we propose a new neural network learning 
rule for three layer nonlinear neural network controllers in 
this paper.  It is called separate learning rule of each layer 
in this paper.  This learning rule is that the neural network 
weights between one layer and next layer are only changed 
at same time and other neural network weights are not 
changed, and after some sampling numbers, the neural 
network weights between other layer and next layer are 
changed.  That is, we can eliminate the interference 
between layers and realize easier discussion about the 
nonlinear neural network controller stability although the 
separate learning rule has slow convergence in comparison 
with the usual neural network learning rule.  We can 
realize the same nonlinear mapping capability because the 
neural network has the nonlinear three layer structure.  
The proposed learning rule is applied for an adaptive type 
neural network direct controller and the discussion about 
its stability condition is presented.  A simulation result of 
the adaptive type neural network direct controller with the 
separate learning rule shows that the proposed learning 
rule can be realized. 
 
2. Interference between neural network weights 
 
       This section explains the structure of the adaptive 
type neural network direct controller briefly.[1][2]  The 
interference between neural network weight learning of 
each layer is focused and it is discussed why the stability 
analysis of the nonlinear neural network controllers with 
the three layer structure is difficult in comparison with that 



of controllers with linear two layer structure such as 
conventional adaptive controllers.  Based on this 
discussion, necessity of the separate learning rule of each 
layer is confirmed. 
   The following object plant is selected in this paper. 
 

  Y(k) = f(Y(k-d)•••Y(k-d–n),U(k–d)•••U(k–d–m))     (1) 
 
Where Y(k) is the plant output, U(k) is the plant input, k is 
the sampling number, d is the dead time, n&m are the 
plant orders and f is the nonlinear function which 
expresses a nonlinear characteristic of the plant.  The 
output error ε(k) is defined by the following equation. 
 

  !(k) = Yd(k) – Y(k)                             (2) 
 
Where Yd is the desired value.  Figure 1 shows the 
scheme of the direct controller.  As shown here, the plant 
input is only composed of the neural network output in the 
direct controller.  From eqs.(1) and (2), the neural 
network input vector I is selected as follows; 
 

  I
T
(k) = [Yd(k+d),Y(k)•••Y(k–n),U(k–1)•••U(k–m)]    (3) 

 
    To simplify, the following discussion selects that the 
neural network has three layers, its output neuron is one 
and both the number of neurons in the input and hidden 
layers are the same as the order of the input vector I.  
When the adaptive type learning is selected, the usual 
neural network learning rule is expressed as the following 
equation through the use of the δ rule. 
 

  W(k+1) = W(k–d) – !'
"J(k)

"W(k–d)   
  J(k) =

1

2
!2(k)

 
  !(k+1) = !(k–d) – "'

#J(k)

#!(k–d)                     (4) 
 
Where W is the weight matrix composed of the neural 
network weights between the input and hidden layers , ω is 
the weight vector composed of the neural network weights 
between the hidden and output layers, J is the cost function 
and η’ is the parameter determining convergence speed.  
When the neural network is linear, we derive the following 
learning rule from eq.(4). 
 

  W(k+1) = W(k–d) – !"(k)#(k–d)IT(k–d) 
  !(k+1) = !(k–d) – "#(k)W(k–d)I(k–d) 
  ! = !'(

"Y(k)

"U(k–d)
)

                               (5) 
 

As shown in eq.(5), the learning of the weight matrix W 
uses the weight vector ω and the learning of the weight 
vector ω uses the weight matrix W.  This fact causes the 
interference between the neural network weight learning of 
each layer and the difficulty of the stability analysis in 
comparison with that of the linear two layer structure 
controllers such as the conventional adaptive controller.  
The separate learning rule is proposed as one solution of 
above problem in the next section. 
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Fig.1 Scheme of direct controller. 
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Fig.2 Scheme of separate learning of each layer. 
 
3. Separate learning rule of each layer 
 
       This section proposes the separate learning rule of 
each layer as a solution to overcome the interference 
between the neural network weights.  Figure 2 shows its 
scheme. This learning rule is that the neural network 
weights between one layer and next layer are only changed  
and other neural network weights are not changed within 
some sampling numbers which is called learning section.  
For this example, the weight vector ω is selected in the 
first learning section.  That is, the learning rule for the 
weight ω of eq.(4) is only used.  In the second learning 
section, the neural network weights between other layer 
and the next layer are changed.  For this example, the 
weight matrix W is selected and the learning rule for the 
weight matrix W of eq.(4) is only used.  As mention 
above, the neural network weights of each layer are 
independently changed.  That is , we can eliminate the 
interference of the neural network weights.  The 
nonlinear mapping capability is not reduced because our 
neural network has the three layer structure. 
     The stability condition of the weight vector ω is 
briefly discussed in the neighborhood of the converged 
vector.  The following equation is obtained from the 
separate learning rule and eq.(4). 
 



  !
0 – !(k+1) = !

0 – !(k–d) – "'
#Y(k)

#U(k–d)
Sg(WcI(k–d))

 (6) 
Where ω0 is the converged vector within one learning 
section and Sg is the sigmoid function.  When the weight 
vector ω is changed, the weight matrix W is the constant 
matrix Wc.  Form eq.(6), the following stability condition 
of the weight vector ω is obtained when the Taylor 
expansion of the output error with regard to the weight 
vector ω is used. (Details are mentioned in the Appendix) 
 

  0 ! "(
#Y(k)

#U(k–d)
)$

0
! 2

      
  ! = !'(

"Y(k)

"U(k–d)
)

        (7) 
 
Where λ0 is the maximum eigen value of the following 
matrix P. 
 

 P = Sg(WcI(k–d)){Sg(WcI(k–d))}T
                 (8) 

  
The stability condition of the weight matrix W can be 
obtained in the similar method if we can use some 
assumptions. (Details are mentioned in the Appendix) 
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Fig.3 Simulation result. 
 
4. Simulation 
 
     This section shows a simulation result of the 
adaptive type direct controller with the proposed separate 
learning rule of each layer. The simulated plant is follows:  
A simulated plant is selected as follows; 
 
Y(k) = - a1Y(k-1) - a2Y(k-2)  
       +U(k-1) +bU(k-2) -a3Y(k-3)+ CnonY

2
(k-1)    (9) 

 
Where a1, a2 & b are the plant parameters, a3 is the parasite 
term and Cnon is the nonlinear term. For this simulation, 
a1=-1.3, a2=0.3, b=0.7, a3=-0.03 and Cnon=0.2 are selected. 
The rectangular wave is also selected as the desired value 
Yd. We select the following sigmoid function f(x) as the 
input output relation of the hidden layer neuron. 
 

f(x)=
Xg{1-exp(-4x/Xg)}

2{1+exp(-4x/Xg)}                          (10)  
 
Where Xg is the parameter determining the sigmoid 
function shape.  Xg=0.5 is selected in this simulation. 
      Figure 3 shows the simulation result where η=1.5 
and the learning section is 2 cycle of the desired value.  
The solid line is the plant output Y and the broken line is 
the desired value Yd.  As shown here, the output error 
suddenly increases after 2 cycle of the desire value, but 
after that, the plant output converges with the desired value 
as learning progresses.  This result shows that the 
proposed learning rule performs well. 
 
4. Conclusion 
 
       This paper proposed the new learning rule of the 
multi-layer neural network controller in order to eliminate 
the inference of the neural network weights of each layer .  
We can discuss the stability condition of the nonlinear 
three layer neural network controller through the use of 
this learning rule.  It was applied to the adaptive type 
neural network direct controller and the simulation result 
showed that it performed well. 
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Appendix 
 
       First, this appendix discusses the stability 
condition of the weight vector ω.  The following 
parameter error vector ζ is defined.  
 

  !(k) = "
0 – "(k)

                             (a-1) 
 
It is assumed that ε(k)=0, when ω(k)=ω0.  From eq.(6) 
and the first order Taylar expansion of the output error ε(k) 
with regard to the weight vector ω(k-d), Following 
equations are obtained. 
 

  !T(k+1) = !T(k–d)[E – "'g2(k)Sg(WcI(k–d)){Sg(WcI(k–d))}T] 

  !(k) = g(k) Sg(IT(k–d)WcT)    
  g(k) =

!Y(k)

!U(k–d)      (a-2) 
 
Where E is the identity matrix.  When ϕ(k)=ζT(k)ζ(k) is 
selected as a candidate of the Lyapunov function, we can 
obtain the following equation. 
 

  !"= "(k+1) – "(k–d)  
    = !T(k–d)Q!(k–d)  

  Q = – 2!'g2(k)P + !' 2g4(k)P2
                     (a-3) 

 
Since P defined by eq.(8) is the real symmetric matrix 
whose eigen values are not negative, there is a real 
orthogonal matrix V so as to P=V-1βV where β is a 
diagonal matrix whose diagonal elements are the eigen 
values of P.  From eq.(a-3), the following equation is 
derived. 
 

  Q = V–1(!' 2g4(k)"2 – 2 !' g2(k)")V               (a-4) 
 
When λi is defined by the eigen value of β, λi is not 
negative and the rank of β is 1.  That is, the positive λi is 
1 and this is the maximum eigen value λ0.  From 
eqs.(3)(4), when the following equation is satisfied, Δϕ is 
not positive and the neural network controller is stable 
with regard to the weight vector ω learning. 
 

  0 ! "(
#Y(k)

#U(k–d)
)$

0
! 2

      
  ! = !'(

"Y(k)

"U(k–d)
)

        (7) 
 
      Next, the stability condition of the weight matrix 
W is discussed.  When the weight matrix W is changed, 

the weight vector ω(k) is constant vector whose symbol is 
ωc.  When the chain rule is use, the following equation is 
obtained from eqs.(2) and (4).  
 

  !J(k)

!W(k–d)
= –"(k)

!Y(k)

!U(k–d)

!U(k–d)

!W(k–d)                (a-5) 
 
From the neural network structure, the following equation 
is obtained. 
 

  !U(k)

!Wij(k)
= "ciSg'{ Wij(k)I j(k))#

j= 1

n

}I j(k)

           (a-6) 
 
Where Sg’ is the derivative of the sigmoid function Sg 
with regard to its input and n is the number of the input 
and hidden layers.  We can define the diagonal matrix Γ 
whose iith diagonal element is follows; 
 

  
Sg'{ Wij(k)I j(k))!

j= 1

n

}
                         (a-7) 

 
From eqs.(4) and (a-5)-(a-7), the learning rule of the 
weight matrix W is expressed as the following equation. 
 

  W(k+1) = W(k–d) + !'"(k)g(k)#(k–d)$cIT(k–d)       (a-8) 
 
Here, when the input vector I is continuous, we can derive 
the following equation from eq.(8). 
 

  W(k+1)I(k+1) ! W(k+d)I(k–d)  
  = W(k–d)I(k–d) + !'"(k)g(k)#(k–d)$cIT(k–d)I(k–d)    (a-9) 

 
The following equation is the definition of the parameter 
error vector ζ for the weight matrix W. 
 

  !(k)= W
0
I(k) – W(k)I(k)                        (a-10) 

 
Where W0 is the converged weight matrix W within one 
learning section.  From eqs.(4)(a-9)(a-10) and the first 
order Taylar expansion of output error ε(k) with regard to 
W(k-d)I(k-d), we can obtain the following equation. 
 

  !T(k+1)= !T(k–d){E – "'g2(k)#(k–d)  

                 
  !"c "cT#(k–d)IT(k–d)I(k–d)}  (a-11) 

 
From eq.(a-11), we can obtain the stability condition of the 
weight matrix W in the same way. 
 


