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Abstract

Some properties of the recurrent neural network
with parametric biases (RNNPB) are discussed here.
The RNNPB is applied to a humanoid robot and is a
candidate model of the mirror system in neuroscience.
A recent experimental study reported that the RN-
NPB encodes given periodical patterns into the PB
vector in a smart manner. This study is the first step
to reveal how the RNNPB works. More concretely,
some conditions are given for the transition matrix of
the RNNPB to produce the stored dynamical patterns
and how the learning algorithm of the RNNPB works
is shown.

1 Introduction

One of the applications of neural networks is the
central pattern generator of a robot or others since a
recurrent neural network can store periodical patterns
as attractors (limit-cycles) by learning them [1]. The
recurrent neural network with parametric biases (RN-
NPB) is one of such robot controllers [2] and has re-
cently attracted attentions as a humanoid controller [3]
as well as a model of mirror neurons in neuroscience
[4-6].

The RNNPB consists of a multi-layer perceptron,
feedback connections and the PB neurons, where the
multi-layer perceptron receives two types of input.
One is the vector of the current internal states via
the feedback connections some components of which
are observed as the output of the RNNPB, and the
other is the vector of parameter biases (PBs) which
externally controls the output.

The RNNPB has the following three phases: The
learning phase where the RNNPB learns the given dy-
namical patterns using the back-propagation through
time (BPTT) algorithm [1] as well as the PBs are
updated in a self-organizing manner, the generation
phase where the RNNPB outputs a dynamical pat-
tern according to the PB vector given externally, and
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the interaction phase where the PB vector is updated
so that the output of the RNNPB coincides with the
desired one.

In general, the number of PBs is much less than that
of internal states. This means that high-dimensional
dynamical patterns are encoded into the PB space in
the learning phase. In the generation phase, on the
other hand, the RNNPB decodes a PB vector and re-
trieves the corresponding dynamical pattern. Hence,
the relationship between the dynamical patterns and
the PB vectors is essential in analyzing what the RN-
NPB does in the learning and generation phases. How-
ever, it has little been clarified so far due to its com-
plicated structure and update equations.

Recently, Yamada and Suyari showed by exhaus-
tive experiments that the three parameters of a sinu-
soidal, the frequency, the amplitude and the offset,
are smoothly mapped into the PB space so that the
topology of the parameter space is kept [7]. This re-
sult suggests that the RNNPB would have an elegant
theory in encoding dynamical patterns. The purpose
of this study is to give a theoretical background to the
useful neural model, taking the experimental results
into account.

2 Problem Formulation

In order to understand the RNNPB, we try to give a
theoretical background to the results by Yamada and
Suyari. Since sinusoids are a basis-set of the space
of periodical patterns, we substitute a linear system
for a multi-layer perceptron and see how the RNNPB
learns periodical patterns as limit-cycles and codes
their properties into the PB vector.

The problem we treat in this study is formulated
as follows. The one-dimensional output, the (N — 1)-
dimensional unobservable internal state vector and the
M-dimensional PB vector at time ¢ are denoted by sy,
c; and by, respectively, where M < N as we consider
how the dynamical patterns are encoded into the PB



vector. In this study, we assume that the PB vector is
constant, that is, the self-organization of the PB vector
is finished. Then, the N-dimensional vector (s;, ¢f)T
is the state vector and is updated as

<Zi> —A (Z) +b, (1)

where A is the state transition matrix.
It is obvious that an arbitrary time-series with pe-
riod N is reproduced if A equals to the shift matrix
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and b is null, where I, and 0,, are the n-dimensional
identity matrix and the n-dimensional null vector, re-

spectively, and T denotes the transposition of a matrix
or a vector.

3 Transition Matrix for Periodical Pat-
terns

We first introduce the conditions on the transition
matrix A under which the RNNPB can produces the
stored dynamical patterns with period N, assuming
b = 0;;. This problem is not easy since it includes an
essential ambiguity in A and the internal state ¢;. In
fact, the RNNPB produces the same output when the
internal state is
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instead of (s¢,¢f)T and
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instead of A, where () is an arbitrary regular matrix.
To remove this ambiguity, we rewrite (1) to a form
without ¢;, that is, an update equation of
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holds true from (1) where
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In fact,
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(AF)} is the first row of A* and a’ and A” are a certain
vector and a certain matrix. Using the ambiguity of
¢ and A, we set Q = A’ in (3) and get

C= (1 0%—1) ()
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From (6), (1) is rewritten as
sip1 = CAC™ s, (10)
and then
StHf, =CACT'S' £, (11)
where
fi=5""s. (12)

Since s; being periodical is equivalent to f, being con-
stant, its condition is described as CAC~! = S, that
is, A=C718C or

ai 1 0 O 0
—a% + as —aq 1 0 0
—aia2 + as —a2 0 1 0
A=
—aia3 + ag —as 0 0 0
—aijan-1+1 —an—-1 0 O 0
(13)
from (8), where ay, is the kth element of a.
Substituting this for (1), we get
St+1 = Q1S¢ + ¢ (14)
ciy1 = (—ai +ag)sy — are + ¢y (15)
Cry2 = (—ar1az + a3z)sy — ascy + Cryo (16)
(17)
ct+N—1 = (—a1an—1 +az)st — an—1¢t + CtrN-1
(18)
and can show ay = 0 for k = 1,..., N from the peri-

odicity of s;. This means C' = I and hence A = S.
From the ambiguity in (3),

_( 1 0%_1) ( 1 0%_1)
A_<0N1 Q™! S On-1 @ (19)

is the condition under which the RNNPB produces
arbitrary periodical patterns, where @ is an arbitrary
regular matrix.



Although (19) is derived under the assumption that
the RNNPB produces arbitrary patterns with period
N, we can easily show that the result above still stands

if s¢,8¢41,...,8+N—1 are linearly independent, that
is,
t+N-1
Z 5,81 (20)
T=t

has full rank, which we assume in the following.

4 PB Vector and Corresponding Pat-
tern

In this section, we see how the PB vector b affects

the dynamical pattern the RNNPB produces. When
b is constant, the state vector is updated as

(Zi) —A (Z) +b (21)

(‘3“2) = A? (St) +Ab+b (22)
Ct+2 Ct

N-1
St4+N N [ St j St
= A E Alb = . 24

Letting the first element of
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be the (k —1)st element of &', that is, b’ = LCb where
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and C' is defined in (7), then
St
stC’< )+LC’b (27)
Ct
holds true, which leads to

s — LCb=C (St) . (28)

C¢

Hence, (21) is rewritten using (12) as

Fia=S"1CACTIS f, + (L — CACT'L+1)Cb.
(29)

This means

1
is constant when CAC~! = ¢S for |¢| < 1.
When f, is a constant vector f, conversely,

(I -8 'CACT'S") f=(L—CAC 'L+ 1I)Cb
(31)

holds and
B=1-S"1tcACc™'s! (32)

does not depend on ¢, where all the eigenvalues of B
must be in (0,2). Substituting ¢t = 0, we get S(I —
B) = CAC~! and hence

I-B=S"'cACc~'s! (33)
=S7YI - B)S* (34)

is a constant matrix. This means that I — B (and also
B) is a cyclic Toeplitz matrix.

5 Learning Properties of BPTT

The RNNPB employs the BPTT algorithm to learn
given dynamical patterns, which approximates a re-
current network to a layered one of finite length and
applies the error back-propagation algorithm [1]. In
this section, we discuss how the linearized RNNPB
learns the patterns with the BPTT algorithm.

Let the transition matrix A be divided to four com-
ponents as

T
_ (11 agp
A= <a21 A22) ’ (35)

where we assume that A satisfies (19), that is, this is
the goal. The transition matrix in the learning phase
at time ¢ is denoted by A and their components by

~ ~T
A= (%12 ‘512) . 36
<021 Az (36)

Note that we omit the subscript ¢ for simplicity.



The BPTT algorithm in the RNNPB approximate
the recurrent network to the three-layered network,
that is,

37
38
39
40

T
St41 = G115t + A€t
T T
=115 + Q1502151 + @i Axc 1,

(37)
(38)
Se41 = G118¢ + Grcy (39)
(40)
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= Q115 + Q1289 5¢—1 + Q15 A20C 1.

and applies the steepest descent method to the squared
error E(A) = (§t+1 — 5t+1)2/2-

Since (38) has terms of the second order with re-
spect to A, a direct analysis is difficult. Therefore, we
divide it two parts: One is a;; and aq2 and the other
is a1, Ao, since the latter appears via c¢;.

From (37) and (39), the BPTT algorithm for ai;

and aiz is expressed as

A0, (s Ty ((G11 — a1 A1
<‘112) ! <Ct (St K ) a2 — a2 (41)

and can be shown to make (é1,a],) converge to
(a11,al;) when the assumption (20) is satisfied and
n is appropriately small.

In the analysis of (@21, A22) based on (38), we as-
sume that (a11,al,) already converges to (ai1,a%),
that is,

~ T /a
141 — St41 = @15(G21 — @21)S11
+ a1T2 (12122 — A22)Ct71. (42)
Then, the BPTT algorithm for as; and /122 is ex-
pressed as

A(as  As) = —nazai,
: (fl21 — a1 12122 - A22) (2_1) (Stfl CtT—l) :
(43)

Therefore, under the assumption (20) (@21 Agz) stops
when it satisfies

a1T2 ((3,21 12122) = a’11“2 (a21 A22) , (44)

which means that (ag; As) does not converge to
(@21 Ag).
6 Conclusions and Discussions

The analysis so far reveals that the essence of the
RNNPB may be the shift operator, which explains the

result by Yamada and Suyari very well. However, the
analysis based on the linear approximation is limited,
as shown in the previous section, since the RNNPB
cannot learn the dynamics by the BPTT algorithm.
More extensive analysis is our future work.
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