
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract 
 

The presented concept for management of distributed 

dynamic systems is based on installing in all system 

components of a universal intelligent module interpreting 

special high-level language, in which any centralized or 

distributed control can be expressed. The mission scenario 

in the language, starting from any interpreter, is collectively 

executed by their network. The interpreters perform 

appropriate operations in nodes, while passing other parts of 

the scenario, together with intermediate data, to other 

interpreters in a coordinated manner. This process covers 

the system at runtime and sets up distributed command and 

control infrastructures providing the overall integrity and 

goal orientation. The approach allows us to manage 

robotized systems in unpredictable and hostile environments, 

with possible failures of components. The language 

description and programming examples in it are provided. 

 

Keywords: crisis management, cooperative engagement 

capability, ubiquitous command and control, distributed 

systems, high level language, mission scenario, 

interpretation network, robotized systems.  

 

 

1  Introduction 
 

In managing large systems, whether civil or military, we 

usually think of them as of something already existing, with 

proper expertise in parts (nodes) and relations between them. 

We also assume that there exists a sort of command and 

control infrastructure, usually hierarchical, covering all its 

parts, through which any external orders to these systems 

are received and both internal and outside impacts 

realized. This infrastructure should also support the 

overall system stability and integrity and guide its 

internal behavior in accordance with the existing rules 

and local and global goals pursued. 
 

But in complex environments, the system 

organization may be indiscriminately damaged at any 

moment of time, with skills vanished in nodes, relations 

broken, and infrastructures destroyed.  To put the system 

back into life, we may need to restore its parts, as well as 

the whole, at runtime [1].  
 

Moreover, quite different philosophies, supported by 

new technologies, to the organization of dynamic 

emergent systems may be needed. First of all, the power 

and universality of the traditional command and control 

(or C2) may be questioned, as this already takes place in 

the area of crisis and disaster response [2,3].  
 

The C2 approach is based on the idea that the right 

way to manage disasters is through centralized control 

and hierarchies. But actual community crisis response 

networks, as indicated by reaction on the recent well 

known disasters, looked nothing like the military-like C2 

hierarchies [2]. They consisted of loosely-coupled 

collections of individuals, groups, and organizations that 

continually changed, having permeable boundaries.  
 

Rather than being organized according to the 

principles of command and control, disaster response 

activities were undertaken through a complex and varied 

set of organizational arrangements characterized by a 

high degree of emergence and improvisation. New 
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networks formed that blended the activities of existing 

organization with those of emergent groups, which dealt 

with local problems as they emerged, using the existing 

resources in novel ways. The decentralized 

multiorganizational responses appeared to be a major 

strength, rather than weakness, and a source of resilience. 

Centralization and hierarchy only slowed down and 

hampered response efforts.  
 

In this paper, we propose to automate the process of 

runtime composition of dynamic distributed systems from 

dissimilar, possibly casual, elements and creation of any 

infrastructures covering them -- by shifting the overall 

system organization to a higher, semantic level with 

orientation on both manned and unmanned systems 

dedicated to operate in emergency situations.  
 

First, we briefly describe the two well-known 

organizational approaches to distributed dynamic systems, 

namely, Cooperative Engagement Capability (CEC) and 

Ubiquitous Command and Control (UC2) [6-8]. We then 

reveal a technology, based on a higher-level control 

language, which can effectively support both CEC and UC2, 

as well as any other, especially crisis management, systems. 

Related programming examples will be presented too.  
 

The previous applications of the technology presented 

include intelligent network management, distributed 

interactive simulation, distributed knowledge bases, group 

behavior, and support of robotized infrastructures [4, 5].  

 

 

2  Basic Tends in Organization of Distributed 

Systems 
 

We outline here the CEC and UC2 approaches, 

originally with military orientation, but with obvious 

significance to any systems with limited local resources but 

oriented on global problems. The first one provides global 

awareness to the distributed system in any its local node, 

and the second one allows us restructure the system’s 

command and control at runtime, without loss of global 

functionality and goal orientation. CEC and UC2 actually 

complement each other, rather than compete, with UC2, 

however, being potentially a broader approach, covering the 

CEC capabilities as well. 

 

2.1  Cooperative Engagement Capability 
 

The Cooperative Engagement Capability [6] brings a 

new power to distributed systems, not by adding new sensor 

and impact components, but by distributing data from them 

in a significantly different manner. CEC fuses high quality 

tracking data from participating sensors and distributes it to 

all other participants in a filtered and combined state, using 

identical algorithms to create a single, common picture. 

CEC has a robust communications system with considerable 

improvement to bandwidth and countermeasures, as well as 

the advantages offered by the global positioning system. 

CEC’s main components and functions are as follows. 
 

The Data Distribution System provides line-of-sight 

(LOS) communication with other units. The Cooperative 

Engagement Processor provides processing of data received 

from other units and incorporates it with own platform data 

to form a single composite data, forming the same 

picture on each unit. The Data Distribution Function 

provides real time data transfer in LOS and over-the-

horizon. The Command/Display Support Function 

performs doctrine management and distribution, also 

group operations in defending against threats.  The 

Sensor Cooperation Function provides increased 

detection and track performance by using composite 

track data from active sensors.  The Engage Decision 

Function provides the capability for decisions to be made 

by an automated process based on doctrine entered by 

the Net Control Unit. The Engagement Execution 

Function supports the control process for impact of 

designated targets and responds to command directions 

and decisions.  

 

2.2  Ubiquitous Command and Control 
 

A Ubiquitous Command and Control system [7, 8] is 

a system of assets, all of which possess a similar C2 

capability. UC2 systems represent devolution of decision 

making power from C2 centers to platforms which are 

designed to provide alternative functionality. Under this 

philosophy, command and control becomes an additional 

function performed in any manned or unmanned units, 

and ubiquitous C2 systems are so named because they 

advocate a C2 capability on every platform.  Automation 

is the primary mechanism for acquiring a similar C2 

capability in any unit, and some decision making can be 

fully automated. Other aspects will perform better with 

human interaction, with the choice between the two 

being mediated empirically.  
 

The automated and human decision making are fully 

integrated, and this includes the option of allowing the 

machine to override or substitute the human. UC2 

systems primarily endorse a distributed and decentralized 

management structure. It also introduces a command 

fusion problem, as each decision maker may fuse 

requests for its resources from multiple sources. In the 

information age, C2 centers may often become the prime 

targets for surgical impacts. In defending against the 

latter, one approach is to build duplicate C2 centers. 

Supporting this, UC2 also enables C2 functionality to 

reconfigure as necessary, offering greater sustainability, 

as well as quality of system performance, with graceful, 

rather then instantaneous, degradation. 

 

 

3   Flexible Distributed Management Model 
 

The distributed computation and control model and 

technology, previously known as WAVE [4] and 

WAVE-WP (or World Processing) [5], is based on a 

higher-level language describing parallel distributed 

solutions in computer networks as a single seamless 

spatial process rather than traditional collection and 

interaction of parts (agents). Communicating copies of 

the language interpreter (as universal control modules U 

in Fig. 1) should be installed in important system 

resources (like internet hosts, mobile robots, or mobile 

phones), which may be emergent. Parallel spatial 

scenarios written in the language can start from any 



 
interpreter, covering the network at runtime, cooperating or 

competing with each other in the distributed space. 

 

Self-evolving scenario

Emergent 
resources 

Universal 
control

U U

U

 
 

Figure 1. The universal control network. 

 

The spreading scenarios can create dynamic knowledge 

infrastructures arbitrarily distributed between computers 

(robots). Subsequently or simultaneously navigated by same 

or other scenarios, these infrastructures can effectively 

support distributed databases, command and control, global 

situation awareness, parallel inference, and autonomous 

decisions. It is possible to operate in this seamless virtual 

world fully ignoring its physical distribution, whereas 

virtual networks can migrate (partially or as a whole) in 

physical networks while being processed. The distributed 

virtual world can optimize and guide movement and 

operations in the physical world, say, by robotic groups 

(armies). 
 

The system mission in the language sets what the system 

should do in a distributed space rather than how to do this, 

which resources to use, or how C2 should be organized. The 

main burden on actual composition of the system, its 

internal organization, and runtime recovery is shifted to 

efficient distributed implementation of the scenario 

language. This allows us to continuously support the 

development of missions and global goal orientation 

regardless of the state of system resources, keeping the 

system operable if at least a single node remains functional. 

Any top down, bottom up and combined solutions are 

available within this spatial programming paradigm. The 

approach often provides hundreds of times application code 

reduction and simplification, allowing us to concentrate on 

efficient global solutions rather than implementation details. 

 

 

4  Distributed Scenario Language 
 

Let us symbolically call it within the current application 

context as Distributed Scenario Language (or DSL), 

whereas the earlier versions carried names WAVE [4], 

WAVE-WP [5], and WPL [9]. The DSL syntax in the most 

general form can be represented as follows: 
 

    wave       →   rule ({ move , }) 

    move      →    constant | variable | wave  

    variable  →   nodal |  frontal | environmental  
 

The program, or wave, is represented as one or more 

constructs called moves, which are separated by a comma 

and embraced altogether by another construct called rule (in 

the functional style, using parentheses). The name 

“wave” reflects the general space navigation ideology of 

the approach, where the program code can cooperatively 

cover the distributed system in parallel wavelike steps. 

And similarly, “move” highlights the potential mobility 

of all language constructs. 
 

Rules serve as various supervisory, regulatory, 

coordinating, integrating, navigating, and data processing 

functions, operations or constraints over moves, which, 

for example, may be:  
 

• elementary arithmetic, string or logic operations on 

data returned by moves;   
 

• hops in physical, virtual or combined spaces 

parameterized by moves;   
 

• hierarchical fusion and return of (remote) data 

provided by moves; 
 

• parallel and distributed control over the development 

of moves as programs, covering control flow of usual 

languages too; 
 

• special contexts of navigation in space, for example, 

causing creation of different infrastructures by the 

evolving and spreading moves. 
 

• sense of values expressed by moves, for their proper 

use by other rules. 
 

Moves can represent values directly, as a constant or 

variable, or can recursively be arbitrary waves 

themselves. Variables can be classified as nodal, or 

stationary, associated with space positions and shared by 

different waves; frontal, moving in space with the 

program control; and environmental, accessing the 

navigated environment in the points reached. If control 

splits by parallel moves, each move receives independent 

copies of all frontal variables. Constants may reflect 

information or physical matter, the latter to be processed 

if proper physical equipment is available. 
 

Wave is applied in a certain position of the 

distributed world, providing data processing and space 

navigation and transformation, eventually terminating in 

the same or in other positions (which may be multiple 

and remote). It provides final result that unites local 

results in the positions (or nodes) reached, and also 

produces a resultant control state. These two can be 

subsequently used for further data processing and 

decision making on higher program levels. 
 

If moves are set to advance in space one after the 

other (defined by a proper rule), each new move is 

applied in parallel in all the nodes reached by the 

previous move, with the rest of the program also moving 

to the new locations (virtually or if needed, physically). 

Different or same moves (by other rules) can also apply 

independently from the same node, reaching new nodes 

asynchronously and in parallel. 
 

The syntax shown above can represent any program 

in DSL, but if convenient, other notations can be used, 

like the infix one. For example, the program  
 

advance (move1, move2, move3)  
 

ordering three moves develop sequentially, each move 



 
from the positions in space reached by the previous move, 

can be represented as: 
 

move1. move2. move3 
 

with the period indicating advancement in space. Similarly, 
 

parallel (move1, move2, move3) 
 

can be written as: 
 

move1; move2; move3  
 

with the semicolon setting independent and parallel 

development. As another example,  
 

assign (R, multiply (sum (a, b, c), d))  
 

can be substituted by: 
 

R = (a + b + c) * d  
 

For improving readability, spaces can be inserted in 

arbitrary places of the programs; they (as well as carriage 

returns) will be automatically removed (except when reside 

in strings in quotes) during the program interpretation. Also, 

it is often useful to show programs using indentations, with 

placing related opening and closing parentheses exactly one 

over the other. 
 

More details about different constructs and their 

meanings can be obtained from the previous versions of the 

language [4, 5]. 

 

 

5  Parallel Language Interpretation 
 

The peculiarities of the syntax and semantics of DSL 

allow us to provide its effective, fully distributed and 

parallel, interpretation without central resources. During this 

process, the spatial unwrapping and replication of the 

recursive program formula takes place, rather than its 

traditional reduction. 
 

A DSL program covers and matches the physical or 

virtual world in parallel, establishing full control over the 

distributed space. Each operation is performed in the 

reached nodes on local data there (environmental, and in 

nodal variables), on what has been brought to these nodes in 

frontal variables with the program control, and on the 

obtained and returned results (possibly, remote) by 

subordinate waves.  
 

The intermediate and final results of the work of DSL 

programs may be scattered throughout the whole navigated 

space; they may be grouped and returned into a certain point 

(or points) if this is needed. Different evolving parallel and 

distributed waves can cooperate or compete in the common, 

open, distributed space. 
 

The DSL interpreter consists of a number of specialized 

modules working in parallel (like parser, data processor, 

control processor, and communication processor). These 

are handling and sharing specific data structures supporting 

persistent virtual worlds and temporary hierarchical control 

mechanisms, like wave queue, incoming and outgoing 

queues, local part of the distributed knowledge network, 

track forest, nodal, environmental and frontal variables, etc. 

[4, 5]. 
 

The interpreter may have its own physical body (say, in 

the form of mobile or humanoid robot), or can be 

mounted on humans (e.g. in mobile phones). The whole 

network of the interpreters can be mobile and open, 

changing the number of nodes and communication 

structure between them, as robots or humans can move at 

runtime. The DSL operations may trigger a combination 

of data processing and physical movement in space, with 

exchange of information and physical matter between the 

interpreters both electronically and in a direct contact. 

 

 

6 Dynamic Creation of Distributed 

Infrastructures 
 

We will consider here simplified programs in DSL, 

which are creating different infrastructure topologies 

over the distributed, and possibly scattered, system nodes. 

The main feature of all these programs is that they can do 

the job in a fully distributed manner, by covering and 

flooding the dynamic and open system in parallel and 

cooperative mode, without any central resources.  
 

These programs, as well as those in subsequent 

sections, have a quite different semantics than usual ones, 

as each their construct may work in other locations in 

space (and in other computers), not in the same as the 

previous ones. Despite this, all the programs constantly 

preserve full integrity and controllability as the whole, 

similar to traditional single-machine programs operating 

in the same memory. This possibility is effectively 

achieved by a powerful implicit distributed track system 

and also internal “command and control” infrastructures 

underlying the distributed DSL interpretation, see for 

previous versions at [4, 5]. 

 

6.1  Star 
 

Starting in any node, the following program forms 

oriented links with name star to all other nodes that 

can be reached directly or indirectly (i.e. via other nodes) 

from the current node (as in Fig. 2). 
 

Create links (+ ‘star’, other nodes) 
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Figure 2. A star infrastructure. 

 

6.2  Full Graph 
 

Starting in any node too, the program below first 

hops to all directly or indirectly reachable nodes, 

including itself, and then from all the nodes reached 

forms a non-oriented link named full to all other nodes, 



 
reached directly or indirectly too (see Fig. 3).  
 

Hop (all nodes). 

Create links ( 

 ‘full’, other nodes (inferior)  

) 
 

To avoid duplicate links, the formation of a link between 

any two nodes takes place only in one way, allowing the 

superior node (or inferior, as another solution) to create the 

link (by comparing certain node’s values, e.g. addresses). 
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Figure 3. The full graph infrastructure. 

 

6.3  Hierarchy 
 

Starting from any node, the following program, in a 

repeated advancement in the distributed space, creates 

oriented links named hierarchy from the current nodes 

to new nodes reached. A new iteration (together with the 

whole program code) starts in parallel from all nodes 

reached by the previous iteration. 
 

Repeat (  

 Create links ( 

  + ‘hierarchy’, first come, 

  range (20) 

 ) 

) 
 

To have the resultant network structured as a tree (with 

its root in the node the program started), the program allows 

entering nodes only once, on the first arrival into them. It 

also tries to establish the next level of hierarchy within 

certain vicinity (range) from the current nodes, to make 

this hierarchy optimized territorially. 
 

This program, however, may not cover the whole system 

if the distance between nodes may exceed the range given. 

In this case, we may decide either to increase the range or 

select the descendent nodes of the hierarchy among any 

other nodes that can be reached, at any distance, also 

allowing us to have only a certain number of subordinate 

nodes for each node, as follows (see Fig. 4): 
 

Repeat ( 

 Create links ( 

   + ‘hierarchy’, first come, 

   other nodes, quantity (2)  

 ) 

) 
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Figure 4. A hierarchical infrastructure. 

 

 

We can also offer a combined solution where, first, 

subordinate nodes are tried to be chosen within the range 

given, and second, if this is not possible, among any 

nodes reached (directly or indirectly). We may also set 

up the maximum number of subordinate nodes allowed 

as the precondition for the both options, with the 

resultant program being as follows: 
 

Repeat ( 

 Create links ( 

  + ‘hierarchy’, first come, 

  Or (range (20), other nodes), 

  quantity (2) 

 ) 

) 
 

Another solution, easily programmable too, may be 

where the range is floating, gradually increasing unless 

the needed number of subordinate nodes is found. 

 

 6.4  Line 
 

Any other distributed topologies can be created in a 

similar way. For example, a line connecting all nodes can 

be just produced by the previous program by allowing 

only a single new node at each step (let it uses now non-

oriented link line), as follows (see Fig. 5): 
 

Repeat ( 

 Create links ( 

  ‘line’, first come, 

  Or (range (20), other nodes), 

  quantity (1) 

 ) 

) 
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Figure 5. A line infrastructure. 

 
 



 

6.5  Ring 
 

With minimal extension, the previous program can 

create a ring, by connecting the last node of the line with its 

first node (also changing link names to ring and making 

them oriented), as follows, where the starting node address 

is always accessible by the special variable START (see Fig. 

6):  
 

Repeat ( 

 Create links ( 

  + ‘ring’, first come, 

  Or (range (20), other nodes), 

  Quantity (1) 

 ) 

). 

Create link (+ ‘ring’, START) 
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Figure 6. A ring infrastructure. 

 

All these programs can work in a fully distributed way, 

without any central control, as already mentioned. All the 

infrastructures above can be built (and can exist) 

simultaneously between the same nodes, and any changes to 

them can be easily done at runtime, without interrupting 

local or global processes which may take place over them. 

 

 

7  Hierarchical Command and Control  
 

Using the infrastructures built above, we can organize 

any centralized or distributed system management and 

control in DSL. Let us show how traditional command and 

control can work via the hierarchical infrastructure, starting 

from its root node and using oriented links hierarchy. 

The following program applies recursive command and 

control procedure (enclosed in braces) in each reached node 

of the hierarchy, after being delivered there in frontal 

variable C2, as its content.  
 

Frontal (C2, Command, Control, Level). 

Assign (C2,  

 {Increment (Level).  

  Detail and apply (Command, Level); 

  Detail and apply (Control, Level); 

  (Hop (+ ‘hierarchy’). Apply (C2)) 

 } 

). 

Assign (Command, command scenario).  

Assign (Control, control scenario). 

Apply (C2) 
 

This procedure C2, in its turn, applies in parallel (which 

is indicated by semicolons, see Section 4) the command and 

control scenarios given from the beginning in frontal 

variables Command and Control (these scenarios may 

be of human, robotic, or mixed orientation). C2 also 

simultaneously passes them and itself for a recursive 

activation and execution in all directly subordinate nodes 

of the hierarchy, which will be acting in the same way, 

and so on. At each level of hierarchy (incremented 

downwards), the original command and control scenarios 

are detailed for their execution with taking into account 

peculiarities of this level, as shown in Fig.7.  

Command i

Control i

Level i-1

Level i+1

Level i
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DSL 
code

Data

Execution

 
 

Figure 7. The C2 interpretation in nodes. 

 

The scenarios delivered to, and activated in, nodes 

can be written in DSL in such a way that could be 

capable of accessing and sharing data and operations in 

any nodes of the whole hierarchy, not only in the current 

one, therefore the organization in Fig. 7 can potentially 

be much more advanced and flexible than the strictly 

hierarchical command and control. The program above 

reflects only a possible organizational skeleton, or 

framework, that can be set up in DSL. 
 

This program works on the already existing 

hierarchical infrastructure, where it starts from the root 

and then covers with activity the whole infrastructure at 

runtime, beginning to work during, rather than after, 

being deployed. We can modify this program to be 

capable of creating the very infrastructure it operates on, 

during its coverage, not before. We can also form a 

temporary hierarchy without explicit links (based on 

internal, invisible interpretation infrastructures) and for 

the current mission only, with its automatic self-removal 

after the mission is completed. This latter case can be 

represented by the following modified program.  
 

Frontal (C2, Command, Control, Level). 

Assign (C2,  

 {Increment (Level).  

  Detail and apply (Command, level); 

  Detail and apply (Control, Level); 

  (Hop (first come, range (20)).  

   Apply (C2) 

  ) 

 } 

). 

Assign (Command, command scenario).  

Assign (Control, control scenario). 

Apply (C2) 
 

This program absorbs mechanisms of the hierarchy-

creation programs discussed earlier, with their spatial 



 
repetition effectively expressed now by spatial recursion. 

 

 

8   Collection and Distribution of Targets  
 

8.1  Using Hierarchical Infrastructure 
 

We can write a spatial program in DSL which self-

spreads from the root node to all other nodes of the 

hierarchical infrastructure, picks up data on all objects 

(targets) seen in all nodes passed and reached, and merges 

and fuses all this data while echoing upwards the hierarchy. 

The data fusion may include removal of duplicate records, 

as the same targets can be seen from different nodes 

simultaneously.  
 

Having collected in the root node all targets detected by 

a distributed system, we can replicate and spread their 

refined list back to all nodes of the hierarchy by the parallel 

self-descending process again, allowing each node to select 

individually targets of inertest from their list and impact 

those it can. All these operations can be performed on the 

hierarchical infrastructure by the following simple program, 

which globally loops in the root node, while repeating the 

detection-collection-fusion, followed by distribution-

selection-impact indefinitely (as shown in Fig. 8). 
 

Loop ( 

 Assign (frontal (Seen), 

  Fuse ( 

   Repeat ( 

    Free (detect (targets));  

    Hop (+ ‘hierarchy’) 

   ) 

  ) 

 ). 

 Repeat ( 

  Free (select and impact (Seen));  

  Hop (+ ‘hierarchy’) 

 ) 

) 

2

4 5

6

4

3

7Local 
sensor 

data

Collection & fusion

Distribution

Impacting 
targets

Top 

control

Global 

loop

 
Fig.ure 8. Hierarchical collection and distribution of targets. 

 

 

8.2  Using Any Infrastructure 
 

Many other efficient solutions of collection and 

distribution of targets detected by a distributed system can 

be proposed in DSL. One of them, the most universal and 

simple, is a fully distributed one, with using any available 

infrastructure (including the ones we have built before like 

star, tree, line, ring or their combinations). The idea is in 

the following.  
 

Each node, fusing what it directly sees with what it 

gets from other nodes, regularly exchanges all 

information it accumulates with direct infrastructure 

neighbors only, updating the records in them if the 

targets brought are fresher or new. With all nodes doing 

this in an infinite local loop, the information about all 

targets seen by all nodes of the distributed system will be 

eventually reaching all its nodes (of course, if the system 

is connected in principle), thus guaranteeing global 

awareness in each node. The following simple program 

implements this distributed algorithm, additionally 

setting certain time delay between the iterations in each 

node (see also Fig. 9). 
 

Nodal (Seen). 

Hop (all nodes).  

Loop ( 

 Wait (60). 

 Fuse and assign ( 

  Seen, detect (targets) 

 ). 

 Select and impact (Seen); 

 Fuse and assign ( 

   (Hop (all links). Seen), Seen 

 ) 

) 
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Figure 9. Fully distributed global vision. 

 

This fully distributed algorithm can work well also 

without any infrastructures built in advance, by merely 

regularly accessing from all nodes any other nodes in 

their vicinity (say, within available or given radio or 

laser range, and not necessarily same neighbors each 

time, as nodes can move), by substituting the line with 

the hop by the following one: 
 

 (Hop (range (100)). Seen), Seen 
 

These were only the simplest programming examples 

of dynamic, on the fly, creation of distributed 

infrastructures and using them for emergent command 

and control and global vision and targeting. More 

complex ones can be effectively written too, without any 

limitations on centralization or, vice versa, distribution of 

activities (and any their combinations) in distributed 

systems, with program code optimally staying in nodes 

or moving between them, cooperatively covering the 

whole system or its pars with activities needed. And all 



 
this (re)organization can be implemented at runtime, on the 

active and operating system, which is especially important 

in crisis situations, where improvisation and flexibility of 

dealing with emergent resources are the qualities of primary 

values. 

 

 

9  Conclusions 
 

A new approach to organization of distributed dynamic 

systems has been presented which, as was shown, can 

effectively support and implement basic trends of 

organization of distributed systems with limited local 

resources but capable of solving complex global problems. 

Among these trends are the well known Cooperative 

Engagement Capability and Ubiquitous Command and 

Control. Using our approach, the CEC and UC2 systems 

will also be able to function under indiscriminate damages 

of their components and infrastructures, while preserving 

functionality and goal orientation. 
 

The approach presented is based on a special language 

describing mission scenarios on a semantic level while 

delegating usual programming routines to automatic 

interpretation. Communicating interpreters of the language 

can be installed in internet hosts, mobile robots and cellular 

phones, integrating any manned and unmanned resources 

under a unified control. Being both high level and fully 

formal, the approach may open a real way to a massive use 

of mobile robotics in advanced crisis relief missions, where 

job division and subordination between humans and robots 

may be emergent. Its advantages for robotized crisis 

management applications may include the following: 
 

• It drastically simplifies the overall control of multi-

robot systems, making it comparable to the control of a 

single robot, regardless of the number of robotic 

platforms used, which can vary at runtime. 
 

• Does not need any central resources as its global control 

can start from any available manned or unmanned unit 

and cover the system at runtime. 
 

• Allows robotized systems to be designed and 

implemented from the topmost, linguistic, level with 

considerable reduction of the time and funds needed in 

comparison with usual bottom up integration. 
 

The previous, or WAVE, version of the technology has 

been written in C under Unix, and is being used in different 

countries, especially for intelligent network management, 

with recent results in Ireland [10, 11] and Canada [12]. The 

WAVE system is available on the Internet, and can be 

downloaded, say, from [13]. The current version of the 

language is in patenting and reimplementation process; it 

can be installed on any platform within a short time. The 

universal wave chip, as hardware language interpreter for 

distributed crisis management systems, is being planned too. 
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