

Abstract

The presented concept for management of distributed

dynamic systems is based on installing in all system

components of a universal intelligent module interpreting

special high-level language, in which any centralized or

distributed control can be expressed. The mission scenario

in the language, starting from any interpreter, is collectively

executed by their network. The interpreters perform

appropriate operations in nodes, while passing other parts of

the scenario, together with intermediate data, to other

interpreters in a coordinated manner. This process covers

the system at runtime and sets up distributed command and

control infrastructures providing the overall integrity and

goal orientation. The approach allows us to manage

robotized systems in unpredictable and hostile environments,

with possible failures of components. The language

description and programming examples in it are provided.

Keywords: crisis management, cooperative engagement

capability, ubiquitous command and control, distributed

systems, high level language, mission scenario,

interpretation network, robotized systems.

1 Introduction

In managing large systems, whether civil or military, we

usually think of them as of something already existing, with

proper expertise in parts (nodes) and relations between them.

We also assume that there exists a sort of command and

control infrastructure, usually hierarchical, covering all its

parts, through which any external orders to these systems

are received and both internal and outside impacts

realized. This infrastructure should also support the

overall system stability and integrity and guide its

internal behavior in accordance with the existing rules

and local and global goals pursued.

But in complex environments, the system

organization may be indiscriminately damaged at any

moment of time, with skills vanished in nodes, relations

broken, and infrastructures destroyed. To put the system

back into life, we may need to restore its parts, as well as

the whole, at runtime [1].

Moreover, quite different philosophies, supported by

new technologies, to the organization of dynamic

emergent systems may be needed. First of all, the power

and universality of the traditional command and control

(or C2) may be questioned, as this already takes place in

the area of crisis and disaster response [2,3].

The C2 approach is based on the idea that the right

way to manage disasters is through centralized control

and hierarchies. But actual community crisis response

networks, as indicated by reaction on the recent well

known disasters, looked nothing like the military-like C2

hierarchies [2]. They consisted of loosely-coupled

collections of individuals, groups, and organizations that

continually changed, having permeable boundaries.

Rather than being organized according to the

principles of command and control, disaster response

activities were undertaken through a complex and varied

set of organizational arrangements characterized by a

high degree of emergence and improvisation. New

A New Concept of Flexible Organization for

Distributed Robotized Systems

Peter Sapaty Anatoly Morozov

Institute of Mathematical Machines and Systems, National Academy of Sciences

Glushkova Ave 42, 03187 Kiev Ukraine

Tel: +380-44-5265023, Fax: +380-44-5266457

sapaty@immsp.kiev.ua

Robert Finkelstein

Robotic Technology Inc., 11424 Palatine Drive, Potomac Maryland 20854

Tel: 301-983-4194 Voice, Fax: 301-983-3921

RobertFinkelstein@compuserve.com

Masanori Sugisaka

Department of Electrical and Electronic Engineering, Oita University

700 Oaza Dannoharu 870-1192 Japan,

Tel: 097-554-7831, Fax: 097-554-7841

msugi@cc.oita-u.ac.jp

Dale Lambert

Fusion for Situation Awareness Initiative, Defence Science and Technology Organisation

PO Box 1500 Edinburgh South Australia 5111

Tel: (+61) 8 8259 7175, Fax: (+61) 8 8259 5589

Dale.Lambert@dsto.defence.gov.au

networks formed that blended the activities of existing

organization with those of emergent groups, which dealt

with local problems as they emerged, using the existing

resources in novel ways. The decentralized

multiorganizational responses appeared to be a major

strength, rather than weakness, and a source of resilience.

Centralization and hierarchy only slowed down and

hampered response efforts.

In this paper, we propose to automate the process of

runtime composition of dynamic distributed systems from

dissimilar, possibly casual, elements and creation of any

infrastructures covering them -- by shifting the overall

system organization to a higher, semantic level with

orientation on both manned and unmanned systems

dedicated to operate in emergency situations.

First, we briefly describe the two well-known

organizational approaches to distributed dynamic systems,

namely, Cooperative Engagement Capability (CEC) and

Ubiquitous Command and Control (UC2) [6-8]. We then

reveal a technology, based on a higher-level control

language, which can effectively support both CEC and UC2,

as well as any other, especially crisis management, systems.

Related programming examples will be presented too.

The previous applications of the technology presented

include intelligent network management, distributed

interactive simulation, distributed knowledge bases, group

behavior, and support of robotized infrastructures [4, 5].

2 Basic Tends in Organization of Distributed

Systems

We outline here the CEC and UC2 approaches,

originally with military orientation, but with obvious

significance to any systems with limited local resources but

oriented on global problems. The first one provides global

awareness to the distributed system in any its local node,

and the second one allows us restructure the system’s

command and control at runtime, without loss of global

functionality and goal orientation. CEC and UC2 actually

complement each other, rather than compete, with UC2,

however, being potentially a broader approach, covering the

CEC capabilities as well.

2.1 Cooperative Engagement Capability

The Cooperative Engagement Capability [6] brings a

new power to distributed systems, not by adding new sensor

and impact components, but by distributing data from them

in a significantly different manner. CEC fuses high quality

tracking data from participating sensors and distributes it to

all other participants in a filtered and combined state, using

identical algorithms to create a single, common picture.

CEC has a robust communications system with considerable

improvement to bandwidth and countermeasures, as well as

the advantages offered by the global positioning system.

CEC’s main components and functions are as follows.

The Data Distribution System provides line-of-sight

(LOS) communication with other units. The Cooperative

Engagement Processor provides processing of data received

from other units and incorporates it with own platform data

to form a single composite data, forming the same

picture on each unit. The Data Distribution Function

provides real time data transfer in LOS and over-the-

horizon. The Command/Display Support Function

performs doctrine management and distribution, also

group operations in defending against threats. The

Sensor Cooperation Function provides increased

detection and track performance by using composite

track data from active sensors. The Engage Decision

Function provides the capability for decisions to be made

by an automated process based on doctrine entered by

the Net Control Unit. The Engagement Execution

Function supports the control process for impact of

designated targets and responds to command directions

and decisions.

2.2 Ubiquitous Command and Control

A Ubiquitous Command and Control system [7, 8] is

a system of assets, all of which possess a similar C2

capability. UC2 systems represent devolution of decision

making power from C2 centers to platforms which are

designed to provide alternative functionality. Under this

philosophy, command and control becomes an additional

function performed in any manned or unmanned units,

and ubiquitous C2 systems are so named because they

advocate a C2 capability on every platform. Automation

is the primary mechanism for acquiring a similar C2

capability in any unit, and some decision making can be

fully automated. Other aspects will perform better with

human interaction, with the choice between the two

being mediated empirically.

The automated and human decision making are fully

integrated, and this includes the option of allowing the

machine to override or substitute the human. UC2

systems primarily endorse a distributed and decentralized

management structure. It also introduces a command

fusion problem, as each decision maker may fuse

requests for its resources from multiple sources. In the

information age, C2 centers may often become the prime

targets for surgical impacts. In defending against the

latter, one approach is to build duplicate C2 centers.

Supporting this, UC2 also enables C2 functionality to

reconfigure as necessary, offering greater sustainability,

as well as quality of system performance, with graceful,

rather then instantaneous, degradation.

3 Flexible Distributed Management Model

The distributed computation and control model and

technology, previously known as WAVE [4] and

WAVE-WP (or World Processing) [5], is based on a

higher-level language describing parallel distributed

solutions in computer networks as a single seamless

spatial process rather than traditional collection and

interaction of parts (agents). Communicating copies of

the language interpreter (as universal control modules U

in Fig. 1) should be installed in important system

resources (like internet hosts, mobile robots, or mobile

phones), which may be emergent. Parallel spatial

scenarios written in the language can start from any

interpreter, covering the network at runtime, cooperating or

competing with each other in the distributed space.

Self-evolving scenario

Emergent
resources

Universal
control

U U

U

Figure 1. The universal control network.

The spreading scenarios can create dynamic knowledge

infrastructures arbitrarily distributed between computers

(robots). Subsequently or simultaneously navigated by same

or other scenarios, these infrastructures can effectively

support distributed databases, command and control, global

situation awareness, parallel inference, and autonomous

decisions. It is possible to operate in this seamless virtual

world fully ignoring its physical distribution, whereas

virtual networks can migrate (partially or as a whole) in

physical networks while being processed. The distributed

virtual world can optimize and guide movement and

operations in the physical world, say, by robotic groups

(armies).

The system mission in the language sets what the system

should do in a distributed space rather than how to do this,

which resources to use, or how C2 should be organized. The

main burden on actual composition of the system, its

internal organization, and runtime recovery is shifted to

efficient distributed implementation of the scenario

language. This allows us to continuously support the

development of missions and global goal orientation

regardless of the state of system resources, keeping the

system operable if at least a single node remains functional.

Any top down, bottom up and combined solutions are

available within this spatial programming paradigm. The

approach often provides hundreds of times application code

reduction and simplification, allowing us to concentrate on

efficient global solutions rather than implementation details.

4 Distributed Scenario Language

Let us symbolically call it within the current application

context as Distributed Scenario Language (or DSL),

whereas the earlier versions carried names WAVE [4],

WAVE-WP [5], and WPL [9]. The DSL syntax in the most

general form can be represented as follows:

 wave → rule ({ move , })

 move → constant | variable | wave

 variable → nodal | frontal | environmental

The program, or wave, is represented as one or more

constructs called moves, which are separated by a comma

and embraced altogether by another construct called rule (in

the functional style, using parentheses). The name

“wave” reflects the general space navigation ideology of

the approach, where the program code can cooperatively

cover the distributed system in parallel wavelike steps.

And similarly, “move” highlights the potential mobility

of all language constructs.

Rules serve as various supervisory, regulatory,

coordinating, integrating, navigating, and data processing

functions, operations or constraints over moves, which,

for example, may be:

• elementary arithmetic, string or logic operations on

data returned by moves;

• hops in physical, virtual or combined spaces

parameterized by moves;

• hierarchical fusion and return of (remote) data

provided by moves;

• parallel and distributed control over the development

of moves as programs, covering control flow of usual

languages too;

• special contexts of navigation in space, for example,

causing creation of different infrastructures by the

evolving and spreading moves.

• sense of values expressed by moves, for their proper

use by other rules.

Moves can represent values directly, as a constant or

variable, or can recursively be arbitrary waves

themselves. Variables can be classified as nodal, or

stationary, associated with space positions and shared by

different waves; frontal, moving in space with the

program control; and environmental, accessing the

navigated environment in the points reached. If control

splits by parallel moves, each move receives independent

copies of all frontal variables. Constants may reflect

information or physical matter, the latter to be processed

if proper physical equipment is available.

Wave is applied in a certain position of the

distributed world, providing data processing and space

navigation and transformation, eventually terminating in

the same or in other positions (which may be multiple

and remote). It provides final result that unites local

results in the positions (or nodes) reached, and also

produces a resultant control state. These two can be

subsequently used for further data processing and

decision making on higher program levels.

If moves are set to advance in space one after the

other (defined by a proper rule), each new move is

applied in parallel in all the nodes reached by the

previous move, with the rest of the program also moving

to the new locations (virtually or if needed, physically).

Different or same moves (by other rules) can also apply

independently from the same node, reaching new nodes

asynchronously and in parallel.

The syntax shown above can represent any program

in DSL, but if convenient, other notations can be used,

like the infix one. For example, the program

advance (move1, move2, move3)

ordering three moves develop sequentially, each move

from the positions in space reached by the previous move,

can be represented as:

move1. move2. move3

with the period indicating advancement in space. Similarly,

parallel (move1, move2, move3)

can be written as:

move1; move2; move3

with the semicolon setting independent and parallel

development. As another example,

assign (R, multiply (sum (a, b, c), d))

can be substituted by:

R = (a + b + c) * d

For improving readability, spaces can be inserted in

arbitrary places of the programs; they (as well as carriage

returns) will be automatically removed (except when reside

in strings in quotes) during the program interpretation. Also,

it is often useful to show programs using indentations, with

placing related opening and closing parentheses exactly one

over the other.

More details about different constructs and their

meanings can be obtained from the previous versions of the

language [4, 5].

5 Parallel Language Interpretation

The peculiarities of the syntax and semantics of DSL

allow us to provide its effective, fully distributed and

parallel, interpretation without central resources. During this

process, the spatial unwrapping and replication of the

recursive program formula takes place, rather than its

traditional reduction.

A DSL program covers and matches the physical or

virtual world in parallel, establishing full control over the

distributed space. Each operation is performed in the

reached nodes on local data there (environmental, and in

nodal variables), on what has been brought to these nodes in

frontal variables with the program control, and on the

obtained and returned results (possibly, remote) by

subordinate waves.

The intermediate and final results of the work of DSL

programs may be scattered throughout the whole navigated

space; they may be grouped and returned into a certain point

(or points) if this is needed. Different evolving parallel and

distributed waves can cooperate or compete in the common,

open, distributed space.

The DSL interpreter consists of a number of specialized

modules working in parallel (like parser, data processor,

control processor, and communication processor). These

are handling and sharing specific data structures supporting

persistent virtual worlds and temporary hierarchical control

mechanisms, like wave queue, incoming and outgoing

queues, local part of the distributed knowledge network,

track forest, nodal, environmental and frontal variables, etc.

[4, 5].

The interpreter may have its own physical body (say, in

the form of mobile or humanoid robot), or can be

mounted on humans (e.g. in mobile phones). The whole

network of the interpreters can be mobile and open,

changing the number of nodes and communication

structure between them, as robots or humans can move at

runtime. The DSL operations may trigger a combination

of data processing and physical movement in space, with

exchange of information and physical matter between the

interpreters both electronically and in a direct contact.

6 Dynamic Creation of Distributed

Infrastructures

We will consider here simplified programs in DSL,

which are creating different infrastructure topologies

over the distributed, and possibly scattered, system nodes.

The main feature of all these programs is that they can do

the job in a fully distributed manner, by covering and

flooding the dynamic and open system in parallel and

cooperative mode, without any central resources.

These programs, as well as those in subsequent

sections, have a quite different semantics than usual ones,

as each their construct may work in other locations in

space (and in other computers), not in the same as the

previous ones. Despite this, all the programs constantly

preserve full integrity and controllability as the whole,

similar to traditional single-machine programs operating

in the same memory. This possibility is effectively

achieved by a powerful implicit distributed track system

and also internal “command and control” infrastructures

underlying the distributed DSL interpretation, see for

previous versions at [4, 5].

6.1 Star

Starting in any node, the following program forms

oriented links with name star to all other nodes that

can be reached directly or indirectly (i.e. via other nodes)

from the current node (as in Fig. 2).

Create links (+ ‘star’, other nodes)

2

4 5

6

4

3

7

starstar

star

Figure 2. A star infrastructure.

6.2 Full Graph

Starting in any node too, the program below first

hops to all directly or indirectly reachable nodes,

including itself, and then from all the nodes reached

forms a non-oriented link named full to all other nodes,

reached directly or indirectly too (see Fig. 3).

Hop (all nodes).

Create links (

 ‘full’, other nodes (inferior)

)

To avoid duplicate links, the formation of a link between

any two nodes takes place only in one way, allowing the

superior node (or inferior, as another solution) to create the

link (by comparing certain node’s values, e.g. addresses).

2

4 5

6

4

3

7

fullfull

full

full

Figure 3. The full graph infrastructure.

6.3 Hierarchy

Starting from any node, the following program, in a

repeated advancement in the distributed space, creates

oriented links named hierarchy from the current nodes

to new nodes reached. A new iteration (together with the

whole program code) starts in parallel from all nodes

reached by the previous iteration.

Repeat (

 Create links (

 + ‘hierarchy’, first come,

 range (20)

)

)

To have the resultant network structured as a tree (with

its root in the node the program started), the program allows

entering nodes only once, on the first arrival into them. It

also tries to establish the next level of hierarchy within

certain vicinity (range) from the current nodes, to make

this hierarchy optimized territorially.

This program, however, may not cover the whole system

if the distance between nodes may exceed the range given.

In this case, we may decide either to increase the range or

select the descendent nodes of the hierarchy among any

other nodes that can be reached, at any distance, also

allowing us to have only a certain number of subordinate

nodes for each node, as follows (see Fig. 4):

Repeat (

 Create links (

 + ‘hierarchy’, first come,

 other nodes, quantity (2)

)

)

2

4 5

6

4

3

7

hierarchy

hierarchy

hierarchy

Figure 4. A hierarchical infrastructure.

We can also offer a combined solution where, first,

subordinate nodes are tried to be chosen within the range

given, and second, if this is not possible, among any

nodes reached (directly or indirectly). We may also set

up the maximum number of subordinate nodes allowed

as the precondition for the both options, with the

resultant program being as follows:

Repeat (

 Create links (

 + ‘hierarchy’, first come,

 Or (range (20), other nodes),

 quantity (2)

)

)

Another solution, easily programmable too, may be

where the range is floating, gradually increasing unless

the needed number of subordinate nodes is found.

 6.4 Line

Any other distributed topologies can be created in a

similar way. For example, a line connecting all nodes can

be just produced by the previous program by allowing

only a single new node at each step (let it uses now non-

oriented link line), as follows (see Fig. 5):

Repeat (

 Create links (

 ‘line’, first come,

 Or (range (20), other nodes),

 quantity (1)

)

)

2

4 5

6

4

3

7

line

line

Figure 5. A line infrastructure.

6.5 Ring

With minimal extension, the previous program can

create a ring, by connecting the last node of the line with its

first node (also changing link names to ring and making

them oriented), as follows, where the starting node address

is always accessible by the special variable START (see Fig.

6):

Repeat (

 Create links (

 + ‘ring’, first come,

 Or (range (20), other nodes),

 Quantity (1)

)

).

Create link (+ ‘ring’, START)

2

4 5

6

4

3

7

ring

ring

ring

Figure 6. A ring infrastructure.

All these programs can work in a fully distributed way,

without any central control, as already mentioned. All the

infrastructures above can be built (and can exist)

simultaneously between the same nodes, and any changes to

them can be easily done at runtime, without interrupting

local or global processes which may take place over them.

7 Hierarchical Command and Control

Using the infrastructures built above, we can organize

any centralized or distributed system management and

control in DSL. Let us show how traditional command and

control can work via the hierarchical infrastructure, starting

from its root node and using oriented links hierarchy.

The following program applies recursive command and

control procedure (enclosed in braces) in each reached node

of the hierarchy, after being delivered there in frontal

variable C2, as its content.

Frontal (C2, Command, Control, Level).

Assign (C2,

 {Increment (Level).

 Detail and apply (Command, Level);

 Detail and apply (Control, Level);

 (Hop (+ ‘hierarchy’). Apply (C2))

 }

).

Assign (Command, command scenario).

Assign (Control, control scenario).

Apply (C2)

This procedure C2, in its turn, applies in parallel (which

is indicated by semicolons, see Section 4) the command and

control scenarios given from the beginning in frontal

variables Command and Control (these scenarios may

be of human, robotic, or mixed orientation). C2 also

simultaneously passes them and itself for a recursive

activation and execution in all directly subordinate nodes

of the hierarchy, which will be acting in the same way,

and so on. At each level of hierarchy (incremented

downwards), the original command and control scenarios

are detailed for their execution with taking into account

peculiarities of this level, as shown in Fig.7.

Command i

Control i

Level i-1

Level i+1

Level i

…

DSL
code

Data

Execution

Figure 7. The C2 interpretation in nodes.

The scenarios delivered to, and activated in, nodes

can be written in DSL in such a way that could be

capable of accessing and sharing data and operations in

any nodes of the whole hierarchy, not only in the current

one, therefore the organization in Fig. 7 can potentially

be much more advanced and flexible than the strictly

hierarchical command and control. The program above

reflects only a possible organizational skeleton, or

framework, that can be set up in DSL.

This program works on the already existing

hierarchical infrastructure, where it starts from the root

and then covers with activity the whole infrastructure at

runtime, beginning to work during, rather than after,

being deployed. We can modify this program to be

capable of creating the very infrastructure it operates on,

during its coverage, not before. We can also form a

temporary hierarchy without explicit links (based on

internal, invisible interpretation infrastructures) and for

the current mission only, with its automatic self-removal

after the mission is completed. This latter case can be

represented by the following modified program.

Frontal (C2, Command, Control, Level).

Assign (C2,

 {Increment (Level).

 Detail and apply (Command, level);

 Detail and apply (Control, Level);

 (Hop (first come, range (20)).

 Apply (C2)

)

 }

).

Assign (Command, command scenario).

Assign (Control, control scenario).

Apply (C2)

This program absorbs mechanisms of the hierarchy-

creation programs discussed earlier, with their spatial

repetition effectively expressed now by spatial recursion.

8 Collection and Distribution of Targets

8.1 Using Hierarchical Infrastructure

We can write a spatial program in DSL which self-

spreads from the root node to all other nodes of the

hierarchical infrastructure, picks up data on all objects

(targets) seen in all nodes passed and reached, and merges

and fuses all this data while echoing upwards the hierarchy.

The data fusion may include removal of duplicate records,

as the same targets can be seen from different nodes

simultaneously.

Having collected in the root node all targets detected by

a distributed system, we can replicate and spread their

refined list back to all nodes of the hierarchy by the parallel

self-descending process again, allowing each node to select

individually targets of inertest from their list and impact

those it can. All these operations can be performed on the

hierarchical infrastructure by the following simple program,

which globally loops in the root node, while repeating the

detection-collection-fusion, followed by distribution-

selection-impact indefinitely (as shown in Fig. 8).

Loop (

 Assign (frontal (Seen),

 Fuse (

 Repeat (

 Free (detect (targets));

 Hop (+ ‘hierarchy’)

)

)

).

 Repeat (

 Free (select and impact (Seen));

 Hop (+ ‘hierarchy’)

)

)

2

4 5

6

4

3

7Local
sensor

data

Collection & fusion

Distribution

Impacting
targets

Top

control

Global

loop

Fig.ure 8. Hierarchical collection and distribution of targets.

8.2 Using Any Infrastructure

Many other efficient solutions of collection and

distribution of targets detected by a distributed system can

be proposed in DSL. One of them, the most universal and

simple, is a fully distributed one, with using any available

infrastructure (including the ones we have built before like

star, tree, line, ring or their combinations). The idea is in

the following.

Each node, fusing what it directly sees with what it

gets from other nodes, regularly exchanges all

information it accumulates with direct infrastructure

neighbors only, updating the records in them if the

targets brought are fresher or new. With all nodes doing

this in an infinite local loop, the information about all

targets seen by all nodes of the distributed system will be

eventually reaching all its nodes (of course, if the system

is connected in principle), thus guaranteeing global

awareness in each node. The following simple program

implements this distributed algorithm, additionally

setting certain time delay between the iterations in each

node (see also Fig. 9).

Nodal (Seen).

Hop (all nodes).

Loop (

 Wait (60).

 Fuse and assign (

 Seen, detect (targets)

).

 Select and impact (Seen);

 Fuse and assign (

 (Hop (all links). Seen), Seen

)

)

2

4 5

6

4

3

7Local
sensor
data

Impacting
targets

Local exchange
& fusion

Local
loop
Global
vision

Local
loop
Global
vision

Local
loop
Global
vision

Figure 9. Fully distributed global vision.

This fully distributed algorithm can work well also

without any infrastructures built in advance, by merely

regularly accessing from all nodes any other nodes in

their vicinity (say, within available or given radio or

laser range, and not necessarily same neighbors each

time, as nodes can move), by substituting the line with

the hop by the following one:

 (Hop (range (100)). Seen), Seen

These were only the simplest programming examples

of dynamic, on the fly, creation of distributed

infrastructures and using them for emergent command

and control and global vision and targeting. More

complex ones can be effectively written too, without any

limitations on centralization or, vice versa, distribution of

activities (and any their combinations) in distributed

systems, with program code optimally staying in nodes

or moving between them, cooperatively covering the

whole system or its pars with activities needed. And all

this (re)organization can be implemented at runtime, on the

active and operating system, which is especially important

in crisis situations, where improvisation and flexibility of

dealing with emergent resources are the qualities of primary

values.

9 Conclusions

A new approach to organization of distributed dynamic

systems has been presented which, as was shown, can

effectively support and implement basic trends of

organization of distributed systems with limited local

resources but capable of solving complex global problems.

Among these trends are the well known Cooperative

Engagement Capability and Ubiquitous Command and

Control. Using our approach, the CEC and UC2 systems

will also be able to function under indiscriminate damages

of their components and infrastructures, while preserving

functionality and goal orientation.

The approach presented is based on a special language

describing mission scenarios on a semantic level while

delegating usual programming routines to automatic

interpretation. Communicating interpreters of the language

can be installed in internet hosts, mobile robots and cellular

phones, integrating any manned and unmanned resources

under a unified control. Being both high level and fully

formal, the approach may open a real way to a massive use

of mobile robotics in advanced crisis relief missions, where

job division and subordination between humans and robots

may be emergent. Its advantages for robotized crisis

management applications may include the following:

• It drastically simplifies the overall control of multi-

robot systems, making it comparable to the control of a

single robot, regardless of the number of robotic

platforms used, which can vary at runtime.

• Does not need any central resources as its global control

can start from any available manned or unmanned unit

and cover the system at runtime.

• Allows robotized systems to be designed and

implemented from the topmost, linguistic, level with

considerable reduction of the time and funds needed in

comparison with usual bottom up integration.

The previous, or WAVE, version of the technology has

been written in C under Unix, and is being used in different

countries, especially for intelligent network management,

with recent results in Ireland [10, 11] and Canada [12]. The

WAVE system is available on the Internet, and can be

downloaded, say, from [13]. The current version of the

language is in patenting and reimplementation process; it

can be installed on any platform within a short time. The

universal wave chip, as hardware language interpreter for

distributed crisis management systems, is being planned too.

References

[1] P. Sapaty, M. Sugisaka, R. Finkelstein, J. Delgado-

Frias, N. Mirenkov, “Advanced IT Support of Crisis

Relief Missions”, Journal of Emergency Management,

Vol.4, No.4, ISSN 1543-5865, July/August 2006, USA,

pp.29-36 (www.emergencyjournal.com).

[2] K. Tierney, “Disaster Beliefs and Institutional

Interests: Recycling Disaster Myths in the

Aftermath of 9-11”, Terrorism and Disaster: New

Threats, New Ideas, Research in Social Problems

and Public Policy, Volume 11, 33—51, 2003

Published by Elsevier Ltd., JSSN: 0196-11 52.

[3] K. Tierney, C. Bevc, and E. Kulikovski, “Metaphors

Matter: Disaster Myths, Media Frames, and Their

Consequences in Hurricane Katrina”, The Annals of

the American Academy, AAPSS, 604, March 2006,

pp. 57-81.

[4] P. S. Sapaty, Mobile Processing in Distributed and

Open Environments, John Wiley & Sons, ISBN:

0471195723, New York, February 1999, 436 p.

(www.amazon.com).

[5] P. S. Sapaty, Ruling Distributed Dynamic Worlds,

John Wiley & Sons, New York, May 2005, 256p,

ISBN 0-471-65575-9 (www.amazon.com).

[6] The Cooperative Engagement Capability, John

Hopkins APL Technical Digest, Vol. 16, No. 4,

1995.

http://www.jhuapl.edu/techdigest/td1604/APLteam.

pdf.

[7] Lambert, D.A. (1999a), “Ubiquitous Command and

Control”, Proceedings of the 1999 Information,

Decision and Control Conference, Adelaide,

Australia, pp. 35–40, IEEE.

http://www.eleceng.adelaide.edu.au/ieee/idc99/pape

rs/lambert_dale_2.pdf.

[8] Lambert, D.A, and Scholz, J.B. (2005), “A Dialectic

for Network Centric Warfare”, Proceedings of the

International Command and Control Research and

Technology Symposium (ICCRTS).

http://www.dodccrp.org/events/2005/10th/CD/paper

s/016.pdf.

[9] P. Sapaty, “Crisis Management with Distributed

Processing Technology”, International Transactions

on Systems Science and Applications, vol. 1, no. 1,

2006, UK, pp. 81-92, ISSN 1751-1461

(http://www.xiaglow-institute.org.uk/itssa/itssa.htm).

[10] S. Dragos and M. Collier, “Macro-routing: a new

hierarchical routing protocol”, Proc. 47th annual

IEEE Global Telecommunications Conference,

Texas, USA.

[11] Sanda-Maria Dragos, “Scalable QoS Routing in

MPLS Networks Using Mobile Code”, PhD

Dissertation, School of Electronic Engineering,

Dublin City University, July 2006, 235p.

[12] Gonzalez-Valenzuela, S. and Leung, V.C.M, "QoS-

Routing for MPLS Networks Employing Mobile

Agents". IEEE Network Magazine, Special Issue,

May-June 2002.

[13] Wave system public domain in Canada:

http://www.ece.ubc.ca/~sergiog/wavefiles/.

