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Abstract 
To deal with the unknown factors of nonholonomic 

mobile robot, such as model uncertainties and external 
disturbances, a robust tracking controller with bounded 
estimation based on neural network is proposed. A neural 
network is to approximate the uncertainties terms, the 
interconnection weights of the neural network can be 
tuned online. And the robust controller is designed to 
compensate for the external uncertainties and the 
approximation error. Moreover, an adaptive estimation 
algorithm is employed to estimate the bound of the 
approximation error. The stability of the proposed 
controller is proven by Lyapunov function. The proposed 
robust tracking controller based on neural network can 
overcome the uncertainties and the disturbances. The 
simulation results demonstrate that the proposed method 
has good robustness. 
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1  Introduction 

The tracking control of nonholonomic mobile robot has 
been a topic of research during recent years. The 
characteristic of the nonholonomic system is that the 
constraints, which are imposed on the motion, are not 
integratable, i.e., the constraints cannot be written as time 
derivatives of some functions of the generalized 
co-ordinates. It is a typical nonholonomic mechanical 
system with high nonlinearity and its control is very 
difficult. It is also a typical nonlinear uncertain system 
with both the parametric uncertainty in the dynamic model 
of the robot including motor dynamics and disturbances 
from the external environment or unmodelled dynamics. 

For the tracking control problem of the mobile robot, 
lots of control methods have been applied. J. M. Yang and 
J. H. Kim [1] proposed a robust tracking controller for 
nonholonomic wheeled mobile robots using sliding mode 
technique. Y. Kanayama et al. [2] developed smooth static 
time invariant state feedback for a velocity-controlled 
mobile robot with nonholonomic constraint. In [3-8], the 
backstepping technique was used to design the adaptive 
and robust controller for the nonholonomic system. M.S. 

Kim et al. [9] applied a robust adaptive dynamic controller 
for a nonholonomic mobile robot with modeling 
uncertainty and disturbances. In recent years, intelligent 
systems, such as fuzzy logic [10] and neural network [5, 
11-13], have been applied to approximate the models or to 
deal with the disturbances and dynamic uncertainties of 
dynamic systems [14, 15]. F. M. Raimondi, M. Melluso 
[10] developed a new theoretical control method based on 
the dynamic behavior of a wheeled vehicle, where a 
mechanism of fuzzy inference for designing a robust 
control system was present. In [5], a robust motion 
controller based neural network and backstepping 
technique is proposed for a two-DOF low-quality mobile 
robot. In [11-13], the neural network controllers in the 
proposed control structure were to deal with unmodeled 
bounded disturbances and unstructured unmodeled 
dynamics in the vehicle.  

In this paper, we proposed a robust tracking controller 
based on neural network for a mobile robot with 
nonholonomic constrains. The proposed controller can 
guarantee robustness to parametric and dynamics 
uncertainties and also rejects any bounded, immeasurable 
disturbances entering the system. The stability is proved 
by the Lyapunov theory. 

The rest of this paper is organized as follows. In Section 
II, a mobile robot with nonholonomic constraints is 
introduced. An robust controller based on neural network 
with bounded estimation for the mobile robot is designed 
in Section III, and the stability is proven using the 
Lyapunov method the velocity tracking error, the neural 
network weights error and the bounded estimation error 
are all bounded. Section IV gives some simulation results 
and conclusions are given in section V. 

2  Dynamic Model of a Nonholonomic 
Mobile Robot 

2.1  Preliminary definitions 

A mobile robot is shown in Fig. 1, which contains two 
driven wheels mounted on the same axis and a castor. It is 
a typical example of a nonholonomic mechanical system. 

An inertial Cartesian frame { }YXO ,,  linked to the 



world and { }CC YXC ,,  linked to the mobile platform 
are used here. It is assumed that the centre of mass of the 
mobile robot is local in C . The pose of the mobile robot 
is completely specified by: 

[ ]Tyx θ,,=q                  (1) 
The nonholonomic constraint states that the mobile 

robot satisfies the conditions of pure rolling and 
non-slipping, i.e., the mobile robot can only move in the 
direction normal to the axis of the driving wheels: 

0sincos =−− θθθ &&& dxy           (2) 
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Fig. 1 A nonholonomic mobile robot 

2.2 Dynamic model of a mobile robot 

Consider a nonholonomic mobile robot system with n 
generalized coordinate q and subject to m constrains can 
be described by [12]: 

( ) ( ) ( ) d,, τqqFqqqCqqM +++ &&&&&  

( ) ( )λqAτqB T−=      (3) 

( ) 0=qqA &                  (4) 

where ( ) nn×ℜ∈qM  is a symmetric, positive definite 

inertia matrix, ( ) nn, ×ℜ∈qqC &  is the centripetal and 

coriolis matrix, ( ) n, ℜ∈qqF &  denotes the surface 

friction and the gravitational vector, n
d ℜ∈τ  denotes 

bounded unknown disturbances including unstructured 
unmodeled dynamics, ( ) rn×ℜ∈qB   is the input 

transformation matrix, rℜ∈τ  is the input vector, 
( ) nmT ×ℜ∈qA is the matrix associated with the 

constrains, mℜ∈λ  is the vector of constrain forces. 
Let ( ) ( ) ( )[ ]qsqsq mn−= ,,1 LS  be a set of smooth 

and linearly independent vector fields in N(A), the null 
space of ( )qA , i.e., 

( ) ( ) 0=qAqS TT             (5) 

It is possible to find a velocity vector ( ) mnt −ℜ∈v , 

such that 
( ) ( )tvqSq =&               (6) 

Multiplying both sides by TS  and using (5), we have 
( ) d

TTTT τSFSvCSSMSvMSS ++++ &&  

BτS T=      (7) 
ττFvCvM =+++ d&         (8) 

Where [ ]Tv ω,=v , v  is the velocity of mobile robot, 

ω is the angle velocity, MSSM T= , 
( )CSSMSC += &T , FSF T= , d

T
d τSτ = , 

BτSτ T= . 
Property 1. M is a symmetric positive definite matrix. 
Property 2.  

( ) maxmin MM ≤≤ qM , ( ) qqq,C && bC≤    (9) 

where minM , maxM , bC  are some positive constants 

that assumed to be unknown. and ⋅  denotes Euclid 
norm. 

Property 3. The matrix ( ) ( )( )qq,CqM && 2−  is 
skew-symmetric. 

Assumption 1. The friction and gravity are bounded by 

( ) qqq,F && 10 ξξ +≤ , where 0ξ and 1ξ  are some 

positive constants. 
Assumption 2. Disturbance is bounded by Dτ≤dτ , 

where Dτ  is a positive constant. 
For a two-wheeled mobile robot, the kinematic model 

can be given as [2]: 
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In order to simplify the problem formulation, it is 
assumed that 0=d . The alternative formulations can be 
readily deduced when 0≠d  [5]. 

Suppose the mobile robot is required to follow a 
reference trajectory, with position and velocity are 
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Then the tracking error expressed with respect to a 
frame fixed on the mobile robot are given as [2] 
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The Lyapunov candidate is Chosen as  
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Differentiating 1L , then we obtain 

3322111 sin eeeeeeL &&&& ⋅++=  
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(14) 
The velocity control law dv  achieves stable tracking 

of the mobile robot for the kinematic model (10) as: 
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where 0,0,0 321 >>> kkk  are the controller gains. 
Then, the equation (14) can be rewritten as 

0sin 3
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32
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The velocity control law (15) may achieve theoretical 
stability with respect to a reference trajectory. In practice, 
however, the velocity dv  cannot be generated directly by 
the motors. Instead, the motor provide a control torque to 
the wheels, which will result in an actual velocity v . So 
it is necessary to design the torque for the robot system. 

3 Robust Control Based on Neural Network 
with Bound Estimation 

Dynamics of mobile robotic are highly nonlinear and 
may contain uncertain elements. Many efforts have been 
made in developing control schemes to achieve the precise 
tracking control of mobile robot [8]. In order to control the 
mobile robot effectively, a neural network-based robust 
controller with bound estimation is proposed in this paper. 
The structure for the tracking control system is presented 
in Fig. 2. 
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Fig. 2 The structure of the control system 

 
First, we define the velocity tacking error as 

dvve −=              (17) 
Then, define a filtered tracking error as 

ekr 4=                (18) 

where 4k  is a positive coefficient vector. The time 
derivative of the filtered tracking error can be written as 

( ) dd vτMτFvCMr && −+++−= −− 11   (19) 
In general, the inertia matrix is known while 

uncertainties in the centripetal and coriolis matrix are 
sometimes difficult to compute. So, a new control vector 
is defined as τMU 1−= , and  the unknown term of 
the equation (19), denoted by f , is an unknown smooth 
function, that is 

( ) ( ) dxf vFvCM &−+−= −1        (20) 
In this paper, we want to approximate this unknown 

function using a two-layer neural network, where the 

vector x  can be defined as [ ]TT
d

T
d

T vvvx &= . 
Therefore, by the universal approximation theorem, there 
exist ideal vector W  such that [11, 13] 

( ) εσ += xf TT VW           (21) 
where the neural network approximation error ε  is 
assumed to be bounded by ∆≤ε . ( )⋅σ  is a 
continuous sigmoid activation function. The first layer 
weights V are selected randomly and will not be tuned 
while the second layer weights W are tunable. The ideal 



neural network weights in vectors W  that are needed to 
best approximate the given function f  are difficult to 
determine. All one needs to know for control purposes is 
that, for a specified value of E  some ideal 
approximating neural network weights exist. Then, an 
estimate value of f  can be given by 

( )xf TT VW σˆˆ =             (22) 

where Ŵ  is the estimated value of W . 
Choose the tracking control law as 

( ) R
TT x UVWU −−= σˆ          (23) 

where RU  is robust controller. 
Then, equation (19) can be rewritten as 

( ) dR
T x εσ +−= UVWr ~

&         (24) 

where WWW ˆ~ −=  is the estimation error, 

dd τM−= εε  is the uncertain term of the 
approximation error and the external disturbances. 

According to (21) and Assumption 2, we can know that 
the uncertain term is bounded, that is, 

EM Ddd =+∆≤+≤ τεε maxτM   (25) 

 
Theorem: Given the system (8), choose the velocity 
control law (15) the tracking control law (23), and the 
adaptation law of the neural network as 

( )xTVrWW σΓ=−= && ~ˆ        (26) 
where 0>Γ  is the learning rate of the neural network. 

The robust controller is designed as  

( )rU sgnÊR −=            (27) 

where Ê  is the estimated value of E , ( )⋅sgn  is a 
standard sign function. And the bound estimation law is 
choose as 

( )rr sgn~ˆ η=−= EE &&
        (28) 

where EEE ˆ~ −=  is the estimation error, η  is a 
positive constant. 

Then, the closed-loop system (8) and (23) is 
asymptotically stable, the filtered error r , the neural 

network weights error W~  and the bounded estimation 

error E~  are all bounded. 
 
Proof: Choose Lyapunov function candidate as 

EELL TT ~~
2
1~~

2
1

2
1 112

1
−− +Γ++= ηWWr   (29) 

Differentiating yields 

EELL TT &&&&& ~~~~ 11
1

−− +Γ++= ηWWrr      (30) 

Substituting (16), (24), and (25)-(28) into (30), we can 
obtain: 

( )( )dR
TT xLL εσ +−−+= UVWr ~

1
&&  

( )rrWW sgn~~~ 1 TT E−Γ+ − &  

( )( ) ( )rrrr sgn~sgnˆ
1

T
d EEL −−+= ε&  

( )( )WVrW &~~ 1−Γ+− xTT σ  

( ) ( ) ( )rrrrr sgnˆsgnˆ EEEd −−−≤ ε  

( )dE ε−−≤ r 0≤−= rα              (31) 

where 0>−= dE εα  is a small positive constant. 

Since 0≤L& , it can be inferred that the filtered error r , 

the neural network weights error W~  and the bounded 

estimation error E~  are all bounded. Let function 
( ) rα=−=Ξ Lt & , and integrate function ( )tΞ  with 

respect to time[14, 15] 

( ) ( ) ( )( ) ( ) ( )( )tEtLEL
t ~,~,0~,~,0d
0

WrWr −≤Ξ∫ ττ  

(32) 

Because ( ) ( )( )0~,~,0 EL Wr  is bounded, and 

( ) ( )( )tEtL ~,~,Wr  is nonincreasing and bounded, the 
following result is obtained 

( ) 0dlim
0

≤Ξ∫∞→
ττ

t

t
          (33) 

In addition, ( )tΞ&  is bounded, by Barbalat’s Lemma, it 

can be show that ( ) 0lim =Ξ
∞→

τ
t

. That is, ( ) 0→tr  as 

0→t . As a result, the closed-loop system (8) and (23) is 
asymptotically stable. 

4  Simulation Results 

In order to verify the validity of the proposed controller, 
a nonholonomic mobile robot is used for illustration in this 
paper, as shown in Fig. 1. The dynamical equations of the 
mobile robot can be expressed in (1) where [12] 
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( )θθθλ &&& sincos cc yxm +−=  

where kg10=m , 2mkg5 ⋅=I , m25.0=b , 

m05.0=r , and sm5.0=rv . The external 

disturbance 0.3≤
idτ  is a random noise with the 

magnitude bounded. 
The initial values of neural network weights W are 

selected randomly in [-1, 1], and the estimations are 

( ) [ ]TE 0,00ˆ = , The controller gains are 101 =k , 

52 =k , 43 =k , and { }10,10diag4 =k . 
Defining a straight line, starting from 

( ) ( ) ( ) ( )[ ] [ ]TT
rrrr yx o45100000 == θq  

The mobile robot, however, is initially at 

( ) ( ) ( ) ( )[ ] [ ]TTyx o0010000 == θq  

where ( ) o00 =θ indicates that the robot is heading toward 
positive direction of x . 

Fig. 3 shows the simulation results for tracking a 
straight line using computed torque method. Since there 
are the uncertainties and disturbance, the mobile robot 
cannot track the trajectory and exhibit a steady state error. 

Under the same conditions, Fig. 4 shows the results for 
tracking a straight line using the proposed method. As it 
can be seen from the figure, the mobile robot can reach the 
line quickly and continues to track it. 

   
(a) Trajectory in the (x, y) plane                         (b) Position errors 

Fig. 3 Results by computed torque controller 

   
(a) Trajectory in the (x, y) plane                      (b) Position errors 



   
(c) Neural network outputs                               (d) Torques 

Fig. 4 Results by the proposed method 
 

5  Conclusions 

Using the robust and neural network methods, a robust 
tracking controller with bounded estimation based on 
neural network is proposed for a nonholonomic mobile 
robot. This controller can guarantee robustness to 
parametric and dynamics uncertainties and also rejects any 
bounded, immeasurable disturbances entering the system. 
The stability is proven using the Lyapunov method. The 
velocity error, the neural network weights error and the 
bounded estimation error are all bounded. Finally, some 
simulation examples are utilized to illustrate the control 
performance. 
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