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Abstract

In this paper, we propose an ontology-base context
model that consists of high level context as well as
primitive spatial and temporal context. Moreover rea-
soning tools are used to find out not only simple con-
textual information such as object location, movement
and distance but also hidden contextual information
such as some objects disappeared by moving behind
bigger objects. Also we use axiomatic rules for re-
solving uncertainties which might be caused by the
mismatches of 3D SIFT key points. Some practical
examples will be provided to show the validities of our
proposed ontology-based context model.

1 Introduction

The intelligent robot needs high level perceptual
tasks - context awareness[1][4][5][6], SLAM[10], ob-
ject recognition. Especially contextual information
is necessary for robot intelligence with which robots
can recognize environments and plan their behaviors
to complete missions while adapting to their environ-
ments. Such perceptual tasks are often required to be
implemented by relatively inexpensive vision sensors
of which visual data can be made very informative
by employing many data processing algorithms. We
note that vision-based context understanding system
requires not only recognition of objects in the scene,
but also contextual interpretation of the scene. Spatio-
Temporal (ST) context is the basis for high level con-
text understanding. However, visual data could be al-
most partial and occult in real environment. And such
visual data processing knowledge have been specially
designed for the domain-specific application. Thus,
there can be hardly shared knowledge such as data

structure, data processing mechanisms and rules. Us-
ing ontological representation makes it easy for in-
telligent robot to share its knowledge and common
concepts[3][4][5][7]. Therefore, ontological representa-
tion and reasoning tools will open possibility for robots
to find hidden knowledge and/or to make that knowl-
edge is growing and reusable.

In this paper, we propose an ontology-base context
model that consists of high level context as well as
primitive spatial and temporal context. Moreover rea-
soning tools are used to find not only simple contex-
tual information such as object location, movement
and distance but also hidden contextual information
such as some objects disappeared by moving behind
bigger objects. Also we use axiomatic rules for resolv-
ing uncertainties which might be caused by the mis-
matches of 3D SIFT key points. For example, objects
cannot float in the air by themselves. Instance of our
proposed ontological context model will be generated
based on 3D SIFT features. Specifically, after recogni-
tion of objects using SIFT features[2], primitive spatial
data including location of objects, distances between
objects, movement of objects are created. When the
primitive spatial data are generated, an approximated
center of an object is selected as a representative point
for fast and efficient data processing. The compen-
sated primitive spatial data are then clustered to in-
stantiate primitive ST contexts. Then, higher level
ST contexts are also instantiated by classifying these
primitive ST contexts according to ontological taxon-
omy of context model. The instance is stored with a
time-tag . Instances are then used to extract some
missing information and/or to resolve uncertain re-
lations by inference tools. Some practical examples
will be provided to show the validities of our proposed
ontology-base context model.

In the following sections, robot-centered ontology



is described. Robot-centered ontology includes onto-
logical model of perception, model, context and ac-
tivity. Second, it will shown how context ontology
instances are generated. Third, our ontology model
will be tested on home service environment. Finally,
a conclusion and consideration for future research are
provided.

2 Robot-centered ontology

Robot-centered ontology is an ontological represen-
tation of robot knowledge that supports intelligent
robot to perceive the environment, to model the state
of the world, to plan the sequence of job, to per-
form the selected activity and to aware a given sit-
uation - context. Robot ontology is necessary for
robot to share and reuse its knowledge, because robot
perceives the environment and puts into action in a
different way as human do[3]. It requires that on-
tological representation of robot knowledge should
be suitable for its own sensors, behaviors as well as
their coordination. Fig. 1 shows the architecture of
ontology-based multi-layered robot knowledge frame-
work (OMRKF), which includes 4 dimensions; KLevel,
KLayer, OLayer and time and 4 levels of knowledge
(KLeveli); Perception(Pi), Model(Mi), Context(Ci)
and activity(Ai). And those knowledge are represen-
tated by ontology.

2.1 4 Levels of Robot ontology

Robot perceives objects with its sensors, models
world, plans some sequence of task, performs the task
with behavior and perceive again, or robot behaves
through its sensor values not with planning but with
pre-programmed behaviors[11]. But, those sensor data
are uncertain and partial information[10]. And service
robot needs context-awareness[4], [5], [6], so that they
can adapt themselves to changing situations. Context
offers a few clues of the proper action selection mech-
anism for robot. According to the advance of con-
text, it is necessary to develop formal context models
to facilitate context representation, context sharing.
Thus, OMRKF is composed of KBoards and rules, and
KBoards is composed of 4 levels of knowledge percep-
tion, modeling, activity and context. each level and
dimension are connected by association rules as in Fig.
1.

Figure 3: The Definition of Interval Relation by Allen

2.2 Context ontology

The context KLevel (KLevel4) of OMRKF has 3
knowledge layers (KLayerij); spatial context (C1 or
KLayer41), temporal context (C2 or KLayer42) and
high level context (C3 or KLayer43) as shown in
Fig.1. C1 is is generated by primitive spatial data
and includes spatial concept such as on, in, near,
far, left and right. C2 is clustered with compen-
sated primitive spatial contest and includes spatial
concepts; object-fixed, move-near, temp-moving. And
C3 is more abstracted context in specific domain with
rules such as dinner, appetizer, main dish and dessert.
And, basic ontological elements of OMRKF is 3 on-
tology layer (OLayerijk) such as meta ontology layer
(OLayerij1), ontology layer (OLayerij2) and ontology
instance layer (OLayerij3). Fig. 2 shows an example
of OMRKF.

2.3 Temporal ontology

Time information is absolute measure which is ob-
tained regardless of location and movement[9]. For
temporal ontology, we reference thirteen interval re-
lations as shown in Fig. 3 to define relations among
actions which were proposed by J. Allen to formal-
ize time[8]. Temporal ontology makes it possible to
obtain knowledge not defined in ontology by inferring
relations among locations using interval relation.

3 Instantiation of Context ontology

In this paper, vision-based objects recognition is
performed by SIFT features. After recognizing ob-
jects, some instance of spatial context ontology in-
cluding location of objects, distances between objects,
movement of objects are created. When the spatial
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Figure 2: An Example of Robot-centered ontology Schema



contexts are instantiated (OLayer413 or C13), an ap-
proximated center of an object is selected as a repre-
sentative point with axioms such as ”Solid objects can-
not penetrate other solid objects” and ”Objects can-
not float in the air by themselves”. The compensated
spatial context are then clustered to generate tempo-
ral context instances(OLayer423 or C23). Finally, we
can get high context instances(OLayer433 or C33) by
domain specific rules. And also we can get hidden ST
contexts by inferencing pre-instantiated ST contexts.

3.1 Instantiation of Spatial Context On-
tology (OLayer413 or C13)

In order to recognize objects, we use a model-based
approach. First of all, we use a 3D OFM (Object
Feature Model) as the reference model which includes
images of object, their corresponding SIFT keypoints,
and representative point. By simply matching of 3D
keypoints between OFM and input image, we can iden-
tify objects and obtain positions of objects with re-
spect to robot. After identifying objects, primitive
spatial data which describe geometric relations of rec-
ognized objects and are composed of location, dis-
tance, and movement data are generated. Also, the
primitive spatial data are instantiated one of spatial
context ontology (OLayer413 or C13).

Location Data: Location data for an object ob is
defined as R(ob) = (t, obj, R(ob)), where t is a time
when the location data is created, obj is the name of
object ob, and R(ob) is a position vector of object ob

with respect to the robot coordinate.
Distance Data: Distance data for ob-

jects ob1 and ob2 is defined as D(ob1, ob2) =
(t, obj1, obj2, D(ob1, ob2)), where t is a time when
the distance data is created, obj1 and obj2 represent
names of object ob1 and ob2, respectively. And,
D(ob1, ob2) is a position vector from object ob1 to
object ob2 with respect to the robot coordinate.

Movement Data: Movement data for an object
ob is defined as M(ob) = (t, obj, M(ob)), where t is a
time when the movement data is created, and obj rep-
resents the name of object ob. M(ob) is the vector of
movement which can be simply obtained by the vector
difference Rt(ob) and R(t−1)(ob).
Table 1 shows definitions used in generation of
primitive-ST data.

3.2 Instantiation of Temporal Context
Ontology (OLayer423 or C23)

Temporal context ontology is instantiated by infer-
ring spatial context ontology instance such as location,

Table 1: Definition for Primitive-ST Data
Definitions Description

ts start time
te end time

td = (te − ts) time interval of interest
tfreq sampling time

ti time acquiring i-th data
Nmax = td

tfreq
maximum number of available data

eR threshold of position error
eD tolerance of distance error
T trustability

distance, and movement data.
Primitive location data of object ob(pR(ob)) shows

that the object ob stays at the same location for a
given period of time td. And pR(ob) is defined as
pR(ob) = (id, ts, te, obj, R(ob), T ).The primitive loca-
tion data can be generated as follows;

For any time ti ∈ {0 < ts ≤ ti ≤ te}
1: If abs(R(ob) − Rti(ob)) ≤ eR then count = count + 1
2: T = count / Nmax
3: Generate pR(ob)

Temporal context ontology are instantiated with one
or more spatial context ontology instance about the same
objects. Table 2 show the spatial context and temporal
context ontolgy and their FOL[7] rules.

3.3 Reasoning of context ontology

We represent OMRFK with FOL. Moreover, OMRKF
includes sub-symbolic data that are seldom utilized by con-
ventional ontology system. The data generated from robot
perception or activities are numerical data, which are par-
tial and incomplete. The probabilistic approach has domi-
nated the solution of that case [2]. However, those systems
may be application-specific, which is difficult to reuse and
requires verification of the procedures. OMRKF applies
sub-symbolic data to ontology-based knowledge represen-
tation, so that OMRKF can deduce hidden knowledge that
is generated by a partial observation or an observation er-
ror, and make it easy to reuse and verify. Moreover, OM-
RKF needs rules that associate each level of knowledge,
these rules enable robot to query not only unidirectional
reasoning but also bidirectional reasoning. Table 2 show
rules for the generation of context represented by FOL.

4 Experimental result

The ST context generation experiment was performed
for objects in a refrigerator. For sequentially changing con-
text in the refrigerator as shown in Fig.4. Mobile robot



Table 2: Rules for spatial context and temporal con-
text ontology
Layer Context Logical representation

C1 SC1 ∀o1, o2, t

location(o1, t) ∧ location(o2, t) ∧

positive((o1.x − o2.x), t) ⇒ left

C1 SC3 ∀o1, o2, t

location(o1, t) ∧ location(o2, t) ∧

dis err((o1.x − o2.x), t, eD) ∧

dis err((o1.y − o2.y), t, eD) ∧

dis err((o1.z − o2.z), t, eD) ⇒ near

C1 SC4 ∀o1, o2, t

location(o1, t) ∧ location(o2, t) ∧

positive((o1.y − o2.y), t) ∧

near(o1, o2, t) ⇒ over

C1 SC6 ∀o1, o2, t

over(o1, o2, t) ∧ equal((o1.y −

o2.y), (o1.height + o2.height)) ∧

dis err((o1.y − o2.y), t, eD) ⇒ on

C2 TC1 ∀o, t, t1
location(o, t) ∧ location(o, t1) ∧

loc err(o, t, t1, eD) ⇒ object − fixed

C2 TC2 ∀o1, o2, t, t1
distance(o1, o2, t) ∧

distance(o1, o2, t1) ∧

dis err(o1, o2, t, t1, eD) ⇒

fixed − distance

C2 TC3 ∀o1, o2, t, t1
distance(o1, o2, t) ∧

distance(o1, o2, t1) ∧

dis near(o1, o2, t, t1) ⇒ object − near

C2 TC5 ∀o1, o2, t, t1
contain(o1, o2, t)∧contain(o1, o2, t1) ⇒
inside

C2 TC7 ∀o1, o2, t, t1, dis1, dis2

distance(o1, o2, t) ∧

distance(o1, o2, t1) ∧

positive(dis1, dis2) ⇒ move − near

(a) Context 1 (b) Context 2

(d) Context 4(c) Context 3

(a) Time 1 (b) Time 2

(c) Time 3 (d) Time 4

Figure 4: Sequentially Changing Contexts

may generate primitive spatial data and instantiate spatial
context and temporal context ontology. At t = t1, there
are two objects (obj2 and obj3) apart from each other in
a refrigerator(obj1). At t = t2 and t = t3, obj3 moves left
and forward, respectively. Finally, a large object(obj4) ap-
pears in front of obj2 and occludes it.

Fig.5 shows the display of our context generation sys-
tem. In the left upper corner, images captured by stereo
camera attached on top of the mobile robot are displayed
continuously. In the right upper corner, the location of
objects, where the location is obtained by our proposed
point-based approach and compensated by our proposed
axiomatic rules, can be also observed. In the lower part of
Fig.5, ST Context predicates generated at experiment are
displayed. And ST Context Predicates for situations inside
refrigerator are listed in Table 3. Note that the proposed
system can extract the relationship between objects which
are not directly visible by inferencing relationship among
the instance of spatial context and temporal contexts cre-
ated at previous times. In this experiment, although obj2
is occluded by obj4, contexts such as front(obj4, obj2) and
front(obj2, obj3) were generated.

5 Conclusion

We proposed ontology-based context model for the
household service robot, and the ontology is represented
by FOL. This model allow robot to find contexts in spite of
hidden and partial data. Moreover OMRKF enable robot
to query through any directional reasoning between each
layer as well as between each level of knowledge with small
number of clues.

For a future work, we would like to extend our context
model to include knowledge to handle uncertain and partial
data. We also would like to represent our knowledge model
as OWL/SWRL which is known to be decidable.
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Table 3: ST Context Predicates generated at Experi-
ment

Time ST Context Predicates for situations
inside refrigerator

t1 ∼ t2 move-near(obj2, obj3), temp-moving(obj3)

t1 ∼ t4 object-fixed(obj1), object-fixed(obj2), fixed-
distance(obj1, obj2), object-near(obj1, obj2),
object-near(obj1, obj3), object-near(obj2,
obj3), inside(obj2, obj1), inside(obj3, obj1)

t4 visible(obj1), visible(obj2), visible(obj3),
visible(obj4), left(obj2, obj3), left(obj4,
obj2), left(obj4, obj3), front(obj2, obj3),
front(obj4, obj2), front(obj4, obj3),
near(obj1), near(obj2), near(obj3), near(obj4)
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