

Linux-based Real Time Monitoring System of Mobile Robots

SeungHo Cho HyoSik Choi JangMyung Lee
Dept. of Electronics Eng. Dept. of Electronics Eng. Dept. of Electronics Eng.

Pusan Nat. Univ. Pusan Nat. Univ. Pusan Nat. Univ.
 Sungho123@pusan.ac.kr chs3040 @pusan.ac.kr jmlee@pusan.ac.kr

Abstract

Real time monitoring is necessary for the dynamic
obstacle avoidance and trajectory tracking of mobile
robots. However there are several problems in
implementing a real time operating system: 1. It is
expensive to develop since a high license fee is required
and 2. Standards for the real-time systems are not well-
established yet. For an educational system under these
difficulties, a Linux-based real time system is possible to
receive the display data with the minimum time delay by
the kernel compiling to fit to the user system. Notice that
Windows OS is suffering from code bloating phenomena,
which may result in a long operation time. An i-BOT is
developed for a demonstration system to show the
localization schemes using the RFID and ultrasonic
sensors, named as iGS (indoor GPS). An RFID is
designated to synchronize the transmitter and receiver of
the ultrasonic signal, and the traveling time of the
ultrasonic signal has been used to calculate the distance
from the iGS to a mobile robot.

Keywords: real-time, Linux, localization, RFID

1. introduction

In the near future, various new services come to our

daily lives through the ubiquitous computing and
network environment. Especially for a mobile service
robot, it is very important to estimate the position and to
recognize human beings and obstacles at any instance.
The localization and recognition techniques are very
important to provide various services to human beings in
various environments [1].

Since the mobile robot is able to move in the working
area, it can be used for various tasks unless it causes
collisions to the obstacles in the environment. On
account of its mobility, the mobile robot can replace
human beings for the hard and dangerous tasks. To
execute the given tasks successfully, the mobile robot
needs to identify its own position for a certain task
including sensing the environment and controlling the
motors. Unexpected disasters may happen through the
malfunction of the mobile robot in synchronizing to the
environment. Therefore the mobile robot is a real time
system to move to the goal as well as to avoid obstacles
concurrently,

Most of the robot control systems are being developed
using Windows O/S. Windows has many advantages of
easy developing environment, such as, supporting
abundant device drivers and multitasking. However it
cannot support hard real time capabilities since the
Windows is not designed for the real-time system
originally, which emphasizes the graphic display.
Moreover it is difficult and takes a lot of time to develop
the device drivers [2] in Windows O/S.

 Basically a real time O/S is suitable to implement a
real time control system. The commercial QNX and
VxWorks have the hard real time capabilities. However,
the price is too high to be used for education and
research purposes. Their support of device drivers for
custom designed controllers is so weak that the
expendability is very low [3].

 In this paper, for the autonomous navigation of the
intelligent robot, i-BOT, a real time control software is
developed and evaluated. To keep the hard real time
capabilities, Linux with RTAI has been used.

In section 2, the development environments of real
time Linux and Windows O/S are analyzed to show the
differences. Section 3 illustrates the hardware platform
of i-BOT and the constitution of iGS (indoor GPS), and
section 4 describes the operating platform for the
autonomous navigation and the position estimation
algorithm of iGS, and the simulation and experimental
results follow in section 5. The ideas and contributions
of this paper are summarized in section 6.

2. Comparison of Real Time Linux and
Windows

2.1 Stability of Linux control system

 Linux is a next generation O/S which can replace the
Windows O/S which has code bloat caused by the
continuous addition of functions when they are required.
That is, the unnecessary code increase (Actually
Windows has about 35 to 40 million unnecessary lines.)
degrades the operating performance in the real time
control system. On the contrary, the real time Linux can
be ported on the small memory such as a floppy disk
since it can be reconfigured by the complier to fit to the
user system. On this reason, the Linux has been widely
utilized for embedded systems.

mailto:Sungho123@pusan.ac.kr
mailto:jmlee@pusan.ac.kr

2.2 Flexibility of development environment

There are several reasons that the Windows platform
has been dominant so far. It provides a user friendly
interface and various services, and the educational cost is
very low. Now the Linux also has almost all the
advantages of Windows by the continuous development.
Figure 1 is a screen shot of Visual Studio which is the
Windows development environment, and Fig. 2 is a
screen shot of QT which is the Linux development
environment. Since both of these two environments
support C and C++ as a basic programming language, the
developing environments are almost the same.

Fig. 1. Visual Studio Screen shot.

Fig 2. QT screen shot.

 Linux also enables to form the tele-debugging

environment by a terminal, which is very rare in
Windows. Moreover the source codes of Linux are open
to public. Therefore it is possible to modify the source
codes according to developing objects and application
environments promptly and easily. However the
performance of the real time system in the Windows
degrades on account of the additional codes for the
various functions.
Therefore in this paper a mobile robot controller is

developed based on a real time Linux, and the
performance is compared to the Window based system.
The modularity and real time performance of the Linux
based system are emphasized to show the superiority of
Linux to Windows.

3. i-BOT Platform and iGS

3.1 i-BOT Platform

The mobile robot used in this research, i-BOT, is
made by Ninety Corp., which is shown in Fig. 3. For the
power supply, 12 V rechargeable batteries are used. Two
active wheels and one auxiliary wheel are driving the
mobile robot. For the simplicity of driving mechanism,

two stepping motors are used. The mobile robot can be
controlled wirelessly from a PC through Bluetooth.

 Fig. 3. i-BOT system.

3.2 Structure of the iGS system

The proposed localization scheme can be applied for
any of moving objects, such as, home robot, service
robot, humanoid robot, etc. The indoor environment
consists of columns, corners, and two dimensional flat
walls which can include desks, tables, and computers
depending on the size of the objects.
There are four beacons in the workspace of i-BOT.

Each beacon is located at a specific corner with a
specific coordinates and it transmits the ultrasonic
signal when it is requested. Notice that most of cases, it
is convenient to install the beacon at the corner of
ceiling. On the mobile robot, there is a receiver which
detects the arrival time of the ultrasonic signal from the
beacon. The receiver has a RF transmitter in the same
body, which sends out an ID for a specific beacon
assigned to the ID to request the ultrasonic transmission.
To identify the orientation of the mobile robot, there are
two receivers on the robot. The beacon receives an
RFID from the receiver, and checks whether the ID
matches to itself or not. When the matching succeeds, it
sends out the ultrasonic signal to the receiver on the
mobile robot.

4. O/S platform for autonomous navigation

4.1 Real-Time System

To incorporate various functions to i-BOT, not only
improvement of the mechanical structure but also design
and implementation of real-time software structures are
important [4]. The real-time software governs the
efficient flow of resources and defines data-flows among
the elements, for the real-time control system. The real-
time position estimation and object recognition are
necessary for higher level functions, such as, the
autonomous navigation and recharge. For the precise
estimation and recognition, the data which have different
physical dimensions from various sensors need to be
processed and fused efficiently. The autonomous mobile
robot may confront with unwanted collisions to obstacles
when one of these elements does not keep the time
constraint.

 For the autonomous navigation of i-BOT, many tasks,
such as, motor control, sensing, position estimation
commands, need to be processed in real time. Each task

has its own control period, priority, execution time, and
computational complexity. Since the hard real-time
properties are required in the control of motors using
sensor data in these tasks, a real-time operating system
which manages the resources efficiently is essential to
implement the real-time control system.

 The most important feature for the controller is real-
time capability. Notice that the real time operating
system is a higher level program to make the tasks being
executed in real time. The operating system does not
solely aim at the high speed operation. Within the
allowed time slot, it provides the desired output utilizing
the predictable system functions. Both of Windows
and Linux are not possible to execute hard real time
tasks, by themselves. Therefore, each operating system
suggests real time kernels with the basic operating
system to be used for the necessary real time system. For
Windows, RTX is the most popularly used kernel. There
are several on-going projects to make the Linux a real
time operating system, such as, RTLinux and RTAI. The
real time operating system supports the programs of
multi-tasking structure with time tags, and also provides
communication synchronization among tasks and
scheduling mechanisms to implement the real time
systems.

Linux is a performance-oriented O/S, which has the
round-robin scheduler. That is, each task holds the token
in a fixed period. Therefore the real time processing
cannot be guaranteed. Even though a preemption
function is added in the recent kernel version 2.6x, it is
still not suitable for the hard-real time system, such as, a
mobile robot system. There is a Linux based real-time
operating system, RTLinux which is commercially
available but applicable to very limited types of
processors.

As a sort of interface program, RTAI is developed and
it is free of charge. The RTAI provides most of the hard
real-time properties, such as, task pre-emption and
priority setup/inheritance. Therefore it is suitable for the
real-time systems under Linux operation system.
 Figure 4 shows the basic structure of RTAI. The Linux
kernel is treated as a task. RTAI and Linux kernel can be
interfaced to the hardware by HAL (Hardware Abstract
Layer). HAL manages to execute the real time tasks
preferentially, while it leaves Linux kernel and the
processes working in the kernel as the lower priority
tasks in RTAI [5].

 Fig. 4. Structure of RTAI.

4.2 Hierarchical control architecture

There are three levels in the architecture depending on
the execution period and characteristics: 1. The highest
level is the task goal which sets up the goal of the
navigation, 2. The second level is the path planner which
generates a path to the goal, and 3. The lowest level is
the trajectory generator which specifies location and
time pairs of the mobile robot on the path.

When the final goal for the autonomous navigation is
determined, the highest level monitoring system plans
the trajectory to the goal by selecting appropriate via and
through points for the mobile robot to follow.

The path planner decides the existence of obstacles
and changes the path to avoid the obstacles. For the
obstacle detection, the ultrasonic transmitter sends out
the signal every 100 msec, and the corresponding
receiver computes the TOF (time of flight) of the
ultrasonic signal and detects the obstacles within the
dangerous range. After the collision avoidance, the
current and goal positions are newly set in the
monitoring system to execute the trajectory planning
again.

In the lowest level, the stepping motors are controlled
to follow the trajectory by the timer interrupt service
routine in every control cycle, which provides a
frequency output to control the motor.

The obstacle avoidance routine is activated when there
are some static or dynamic obstacles in the path of the
mobile robot, i-BOT, which senses and avoids the
possible collisions using the ultrasonic sensors and the
two stepping motors, respectively. When it is not
possible to avoid the collision, the routine may send out
STOP command to the motor controllers. After the
successful avoidance, the current mobile robot follows
the desired trajectory to the goal.

4.3 iGS position estimation algorithm

The localizer starts to count when it sends out an

RFID signal assuming that the transmission time to a
beacon is negligible. When a beacon receives its RFID,
it sends out the ultrasonic signal immediately. The
counting at the localizer continues until it receives the
ultrasonic signal. After the distance computation using
the counter value which corresponds to the TOF of the
ultrasonic signal, the localizer sends out another RFID to
the next beacon. When the distances to all the expected-
nearby beacons are measured, the coordinates of the
mobile robot is going to be calculated.

The TOF which can be calculated by the counter is
basis for the computation of the distance between the
ultrasonic transmitter (beacon) and receiver (localizer) as
follows:.

Tv ×+= 6.05.331 [m/sec] (1)
dtCns −×= [sec] (2)

svr ⋅= [m] (3)
where T is the room temperature, C is the period of
counter clock, is the number of counter, is the n dt

time delay for ultrasonic signal detection, is the total
freight time of the ultrasonic signal, and

s
r is the

distance between the beacon and the mobile robot.
The synchronization between the beacon and the

receiver on the mobile robot is very important in
measuring the TOF of the ultrasonic signal without
interferences. To select a beacon at a time, an RFID is
transmitted to the beacon from the mobile robot. At the
moment of the RFID receipt, the corresponding beacon
transmits the ultrasonic signal to the receiver. Therefore
there is an RF receiver with a specific ID and an
ultrasonic transmitter at each beacon; there is an RF
transmitter and an ultrasonic receiver on the mobile
robot.

For the localization of the mobile robot using the
triangulation technique, at least three beacons are
necessary for a mobile robot in the 3D space..

5. Simulations and experiments

To implement and to analyze the performance of a
mobile robot control system under Linux O/S, a test-bed
is implemented using iGS and i-BOT as shown in Fig. 5.
The height, length, and width of the iGS space are 3.0 m,
3.0 m, and 2.0 m, respectively. The speed of i-BOT is
kept below 35cm/sec considering the localization
accuracy and safety of the mobile robot.

Fig. 5. Experiment environment.

 Monitoring program manages the display of the

position data measured by iGS and the counter values of
the stepping motors sent through the Bluetooth, and it
also sends out the motor control commands. In this paper,
the monitoring program is implemented on a PC with the
Linux using QT program, which gathers the data through
Serial-COM and displays on the monitor.

To make the ultrasonic receiver free from reflected
interference signals. An RFID is sent out every 20 ms for
each beacon. The total data processing time of iGS to
obtain the location coordinates is 90 ms.

600

800

1000

1200

1400

1600

1800

1000 1200 1400 1600 1800 2000

Center X Position[mm]

C
e

n
te

r
Y

 P
o

s
it

io
n

[
m

m
]

600

800

1000

1200

1400

1600

1800

1000 1200 1400 1600 1800 2000

Center X Pos ition[mm]

C
e
n
te

r
Y
 P

o
s
it
io

n
[
m

m
]

(a) Trajectory estimation. (b) EKF results.
 Fig. 6. Trajectory of a moving object.

Figure 6(a) shows experimental trajectories of the
mobile robot: the black solid line represents the actual
trajectory while the rectangular marks represent the
estimated trajectory by the triangulation method. In the
middle of the path, there are filled rectangular marks
which represent the positions estimated by only two
sensor data. Fig. 13 represents the trajectory obtained by
the EKF (extended Kalman filter) using the data set from
the triangulation method. By applying the extended
Kalman filter, the error between the real and estimated
trajectories has been reduced to 20 % as it is clearly
recognized by comparing Fig. 6(a) and Fig. 6(b).

6. Conclusion

 A flexible controller is designed to satisfy the various

requirements of customers working on the Linux
environment. RTAI has been utilized to form a real time
control system based on Linux, since its source codes are
open to public and it has higher flexibility than Windows
to satisfy the controller specifications and environment.
Through the various experiments, RTAI is proved to be
efficient for modular and real-time programming. A
monitoring system is specifically designed for the
improvement of i-BOT control precision by taking
advantage of this Linux-based real time O/S. It is
concluded that the i-BOT working in the Linux
environment developed in this research, is useful and
flexible for education and researches.

Acknowledgements

This Work was supported in part by MIC&IITA
through IT Leading R&D Support Project

REFERENCES

[1] S. Singh, “Obstacle detection for high speed

autonomous navigation,” Proc. Of IEEE Int. Conf.
on Robotics and Automation, pp. 2798-2805, 1991.

[2] C. H. Lee and C. Mavroidis, ”PC based control of
and mechatronic systems under MS-windows NT
workstation,” IEEE/ASME Trans. on Mechatronics,
vol.6, no. 3, pp. 311-321, 2001.

[3] W. F. Lages and E. M. Hemerly, “Linux as a
software platform for mobile robots,” submitted to
IEEE Transactions on Software Engineering, 2000.

[4] I. S. Song and F. Karray, “Software architecture
for realtime autonomous agents : a case study for
digital train system,” Proc. of IEEE International
Symp. on Intelligent Control, pp. 403-408, 2002.

[5] L. Dozio and P. Mantegazza, “Linux real time
application interface (RTAI) in low cost high
performance motion control,” Motion Control 2003,
a Conference of ANIPLA, Italy, March, 2003.

[6] SeungBu Kim, Gi-Gun Nam and JangMyung Lee,
“Indoor Localization Scheme of a Mobile Robot
Using RFID” international robot Week, Deajeon,
Korea, 2005.

	
	Abstract

