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Abstract

In the research area of visual tracking as well
as recognition, there have been numerous attempts
to use appearance-based object representation which
does not require explicit knowledge or precise geomet-
ric representation of the object. In particular, the
eigenspace representation has been widely used for vi-
sual tracking of a target, because of its rich representa-
tional power based on clear mathematical properties.
There is, however, a big problem that the appearance
of a target object may vary in time due to various fac-
tors such as changes in the lighting condition, and in
location, pose, scale, and shape of the object. On-
line algorithms that incrementally update eigenvec-
tors (basis images) can be an answer to this problem.
In this study, we propose an adaptive visual tracking
method by combining an on-line variational Bayesian
version of principal component analysis (PCA) and
particle filtering. Computer simulations demonstrate
our method enables robust visual tracking of a target
whose appearance varies in noisy environments.

1 Introduction

In the research area of visual tracking as well
as recognition, there have been numerous attempts
to use appearance-based object representation which
does not require explicit knowledge or precise geomet-
ric representation of the object. In particular, the
eigenspace representation has been widely used (e.g.,
[6, 5]) because of its computational efficiency based on
clear and established mathematical properties. There
is, however, a serious problem that the conventional
eigenspace method is not robust against changes in
the appearance of a target, such as lighting condition,
pose, scale, shape, and so on. This problem can be
mediated if every appearance variation of the target
object is prepared as basis images, but this is quite

impractical. An algorithm which updates eigenvec-
tors (basis images) on-line can be an answer to this
problem. Lim et al. (2004) proposed such a visual
tracking algorithm [2] that employed a sequential al-
gorithm based on singular value decomposition (SVD),
called R-SVD method, and demonstrated robust face
tracking of a person walking in cluttered backgrounds.

In this article, we propose an adaptive visual
tracking method by combining an on-line variational
Bayesian version of principal component analysis
(PCA) and particle filtering [4]. Computer simula-
tions demonstrate our method enables robust visual
tracking of a target whose appearance varies in noisy
environments.

2 Algorithm

2.1 Overview

Our visual tracking algorithm is basically combi-
nation of on-line variational PCA and particle fil-
ter. Particle Filter (PF) [7] is an approach to mak-
ing Bayesian estimation of intractable posterior distri-
butions from time-series observation signals disturbed
by non-Gaussian noises. The effectiveness of PFs has
been reported in various research area, such as real-
time visual tracking in Computer Vision (e.g., [4]).
Under an assumption that the target dynamics form
temporal Markov chains and observations are indepen-
dent, incremental Bayesian estimation of the hidden
target state Xt at time t is computed by

p(Xt|It) ∝ p(It|Xt)
∫

p(Xt|Xt−1)p(Xt−1|It−1)dXt−1

(1)
where It = {I1, . . . , It} is a set of observed images.

In this study, smoothness is assumed for target mo-
tions: Xt−Xt−1 = Xt−1−Xt−2+ξt, where ξ denotes a
process noise. In the next subsection, we describe the



likelihood term p(It|Xt), based on on-line variational
PCA.

2.2 On-line Variational PCA

Principal component analysis (PCA) is a well-
established method of multivariate analysis to perform
feature extraction from a data point or a set of data.
A data space is reduced by a projection to a com-
paratively low-dimensional subspace, a feature space.
In PCA, this projection is linear. PCA can be re-
formulated into a probabilistic model including latent
variables, which is called Probabilistic Principal Com-
ponent Analysis (PPCA).

Our proposed method is an on-line updating
method whose generative model is given by PPCA, to
construct the basis images. This method assumes ob-
served data include noise, thereby robust basis images
can be obtained in a real-world environment which in-
cludes various distracters or occlusion.

An observed image vector It is given by

It =µ + W st + nt

=W̃ s̃t + nt, nt ∼ NNd(nt|0, Σt), (2)

where µ ∈ RNd is the mean of observed images,
W ∈ RNd×Nb is the basis images (the eigen-images),
W̃ = (W,µ), st ∈ RNb is basis score, s̃ = (sT

t , 1)T , Nd
is the number of pixels, and Nb is the number of bases.
ND(I|µ, Σ) denotes a D-dimensional Gaussian distri-
bution with the mean µ and the variance Σ. Then, we
obtain the following formulation:

p(It|W̃ , st) =NNd(It|W̃ s̃t, Σt). (3)

We also assume the prior distribution of st is given by

p(st) =NNb(st|0, ENb), (4)

where ENb is a Nb×Nb unit matrix. Using the Bayes
theorem, we have

p(It,St|W̃ ) =
t∏

τ=1

p(sτ )p(Iτ |sτ , W̃ ). (5)

For the prior distribution of the eigen-vectors, we as-
sume natural conjugate:

p(W̃ ) =
D∏

d=1

NNb
(θd|ed, Σθ), (6)

where θd = (w(1)
d , ..., w

(Ñb)
d )T ∈ RÑb, ed =

(δ1,d, ..., δÑb,d)
T ∈ RÑb, Σθ = γ−1EÑb ∈ RÑb×Ñb,

Ñb = Nb + 1, and then (θ1, ...,θD)T = W̃ . δi,j is the
Kronecker delta:

δi,j =

{
1 (i = j)
0 (i 6= j).

(7)

Then, the posterior distribution of the basis scores and
the parameter (basis images) is given by

q(W̃ ,St) =q(St)q(W̃ ), q(St) =
t∏

τ=1

q(sτ ), (8)

where St = {s1, ..., st}.
In the variational Bayes, the free energy is defined

and maximized. The following is an on-line version
of the free energy in which a forgetting factor is in-
troduced in order to be insensitive to inaccurate past
data, and to cope with sudden changes of a target ap-
pearance or changes in the environment.

In our on-line variational PCA, the forgetting fac-
tor λs(0 5 λs 5 1) is introduced in order to forget
(discount) gradually the influence of the past incorrect

estimation. ηt =
(∑t

τ=1 Λ(τ, t)
)−1

is a normalization

coefficient, Λ(τ, t) =
∏t

s=τ+1 λs, and then the on-line
free energy is given by

Fλ
t [q] =ηt

t∑
τ=1

Λ(τ, t){log p(Iτ ) (9)

− KL(q(W̃ ,Sτ )||p(Sτ , W̃ |Iτ ))}.

The maximization of the free energy is equivalent
to the minimization of the discounted KL divergence
between q(St, W̃ ) and p(St, W̃ |It).

On variational Bayes estimation, q(St) and q(W̃ )
that maximize the free energy are computed by repeat-
ing a VB-E step and a VB-M step. After convergence,
we obtain approximated solutions of factor score ma-
trix S and eigen-vector matrix W̃ . Then, eigen-vector
matrix W̃ can be used as basis images.

The tracking is achieved by particle filter governed
by the observation model p(It|Xt), which is the likeli-
hood of Xt given It, and the dynamics model between
two states p(Xt|Xt−1). The observation model is given
by using the estimated basis W̃ as

p(It|Xt) ∝ exp
(
− 1

2σ2
‖It(Xt) − W̃ s̃t‖2

)
, (10)

where It(Xt) is an observed image at the target state
(position) Xt, and σ2 denotes the measurement noise
variance assumed to be a constant for simplify. In
this study, the motion of the target object between



Figure 1: Simulation environment

two consecutive frames is assumed to be linear. The
target state is defined as Xt = (xt, yt), where xt and
yt denote the two-dimensional position on the image
plane at time t.

3 Experiments

3.1 Setup

We conducted tracking experiments through com-
puter simulations to examine the effectiveness of our
proposed method, that is, adaptive basis image up-
dates and robust visual tracking.

Figure 1 illustrates the simulation environment. A
target, a coffee cup, moved from the left side of the
image toward the right side with a velocity of 2 [pix-
els/frame], and turned back to the right side, as de-
picted by an allow. During this course, the appearance
of the target was reversed twice with specific intervals
indicated by gray lines. There were four experimen-
tal conditions; normal condition, noise condition in
which pixel-wise Gaussian noise was added, occlusion
condition in which a stationary occluder depicted as
a shade was added, and noise-occlusion condition in
which both noise and the occluder were added (cf. Fig-
ure 2). In each condition, 10 times of simulations were
conducted to estimate statistically the performance of
our method.

200 particles were used. The image stream was 110
frames of 120×160 gray scale images. The image of
the target coffee cup was of 20×20 pixels. The width
of occlusion was 15 pixels. The pixel-wise Gaussian
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Figure 2: Sample images in simulation
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Figure 3: Time course of basis images when the target
object was reversed (for the normal condition).

noise was zero-mean with variance 302. The maximum
number of basis images was set to 10.

3.2 Results

Figure 3 demonstrates how the basis images were
updated. This figure shows the time course of five ba-
sis images of the tracked object every three flames just
after the object was reversed. Each basis was quickly
and successfully adapted to the reversed images, in
which the handgrip of the cup was a salient feature in
the appearance of the cup. This result suggests three
or four bases would be enough to represent this specific
target object.

Figure 4 presents an example time course of the on-
line free energy. Shaded areas and unshaded areas cor-
respond to the two different appearances of the coffee
cup (see Figure 1). The free energy sharply dropped
down just after the target appearance was reversed,
followed by quick recoveries. Because the free energy
strongly correlates with the reliability of the estima-
tion of basis images, this result indicates our successful
implementation of the on-line variational PPCA. The
time course shown in Figure 4 was for the normal con-
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Figure 4: Example time course of on-line free energy

Table 1: Average tracking error over 10 trials

Task error(MSE)
normal 4.29±2.68
noisy 4.42±2.63

occlusion 4.39±2.67
noisy and occlusion 4.52±2.62

dition, but we confirmed that profiles in other cases
were almost consistent to this time course.

The tracking performance in the four conditions is
summarized in Table 1. The tracking errors are simi-
lar. Increasing the number of particles from 200 should
decrease the errors.

4 Conclusion and Future Work

In this study, we proposed an adaptive visual
tracking method by combining the on-line variational
Bayesian PCA and particle filtering. Simulation ex-
periments demonstrated that the algorithm realized
accurate and robust visual tracking of a target whose
appearance was suddenly reversed, even in the case
where Gaussian noise was artificially added and an
occluder was placed in the pathway of the target.

There are many issues opened for future work. First
of all, the performance comparison with existing meth-
ods like R-SVD [2] is necessary. Our preliminary ex-
periments using the same simulation environment sug-
gests that the tracking performance of R-SVD is as
high as our method. Further exploration is required

for the performance comparison, and for making the
difference salient.

One of the most interesting and useful extensions
would be on-line control of the forgetting factor. Hi-
rayama et al. proposed a method in which the forget-
ting factor was controlled by the free energy calculated
based on their probabilistic model, and demonstrated
the effective detection of abrupt changes in face im-
ages [1]. As shown in their study, probabilistic models
different from the conventional PCA model can be con-
sidered to improve the tracking performance in real-
world environments.
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