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Abstract 
This paper presents a new method for multiple tasks 
performance based on multiobjective evolutionary 
algorithm. In order to verify the effectiveness, the 
proposed method is applied to evolve neural controllers 
for the Cyber Rodent robot that has to switch properly 
between two different tasks. Furthermore, the tasks and 
neural complexity are analyzed by including the neural 
structure as a separate objective function. Results using 
Cyber Rodent robot show that multiobjective-based 
evolutionary method can be applied effectively for 
generating neural networks controlling the robot to 
perform multiple tasks, simultaneously. 
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1.  Introduction 
 
Traditionally, the research on intelligent agents has 
mainly focused on evolution or learning of individual 
perceptual-motor and cognitive tasks. Nevertheless, 
intelligent agents operating in everyday life environments 
often are required to perform multiple tasks 
simultaneously or in rapid alternation, which is a 
challenge even for humans and primates. 

Several approaches in the literature have been proposed 
to address robot multiple tasks performance problem. Up 
to now the standard methodology in machine learning 
has been to break large problems into small, independent 
subproblems, learn the subproblems separately, and then 
recombine the learned pieces [1].  In addition to learning, 
evolution of neural controllers is well known for 
providing a family of naturally-inspired algorithms which 
can successfully address a wide range of robot behavior 
learning problems ([2], [3]). In evolutionary robotics, 

different constraints and objectives are handled as 
weighted components of the fitness function ([4], [5]), 
applying Single Objective Evolutionary Algorithm 
(SOEA). 

This article presents a novel approach for robot multiple 
tasks performance  based on Multiobjective 
Evolutionary Algorithm (MOEA) ([6]). Unlike previous 
methods, in the experiments presented here, each task is 
considered as a separate objective function. 
Nondominated Sorting Genetic Algorithm (NSGA) ([7]) 
is used to generate the Pareto set of neural networks. 

In this method, we evolved one single neural controller 
for multiple tasks performance, considering relevant 
information of each task as sensory inputs. Therefore, as 
the number of tasks increases, the neural controllers 
become more complex. This makes the evolution process 
difficult. In addition, the hardware implementation of 
evolved neural controllers may result in poor 
performance due to the increased error in sensory data. In 
order to further investigate if the MOEA can also 
generates efficient neural controllers for multiple tasks 
performance; the structure of neural network is added as 
a separate objective function. 

Simulation and experimental results show a good 
performance of the proposed method. The non-
dominated optimal Pareto neural controllers have a good 
distribution and CR robot behavior varies from 
completing each of both considered tasks to flexibly 
switching between them. Therefore, as a specific 
contribution of proposed method is that in a single run of 
MOEA are generated agents with completely different 
behaviors, making it possible to select the appropriate 
neural controller based on our preferences. Moreover, 
efficient neural controllers with appropriate sensory 
inputs are selected through the course of evolution. 



2.  NSGA 
 
A real number NSGA was employed to evolve the neural 
controller. In [8], the authors compared the NSGA with 
four others multiobjective evolutionary algorithms using 
two test problems. The NSGA performed better than the 
others did, showing that it can be successfully used to 
find multiple Pareto-optimal solutions. In NSGA, before 
selection is performed, the population is ranked on the 
basis of domination using Pareto ranking. All 
nondominated individuals are classified in one category 
with a dummy fitness value, which is proportional to the 
population size [7]. After this, the selection, crossover, 
and mutation usual operators are performed. 
In the ranking procedure, the nondominated individuals 
in the current population are first identified. Then, these 
individuals are assumed to constitute the first 
nondominated front with a large dummy fitness value [7]. 
The same fitness value is assigned to all of them. In order 
to maintain diversity in the population, a sharing method 
is then applied. Afterwards, the individuals of the first 
front are ignored temporarily and the rest of population is 
processed in the same way to identify individuals for the 
second nondominated front. A dummy fitness value that 
is kept smaller than the minimum shared dummy fitness 
of the previous front is assigned to all individuals 
belonging to the new front. This process continues until 
the whole population is classified into nondominated 
fronts. Since the nondominated fronts are defined, the 
population is then reproduced according to the dummy 
fitness values. As the individuals in the first front have 
higher fitness value, they always get more copies than the 
rest of the population. 
 
3. Multiobjective Evolution of Neural 

Controllers 
 
3.1 Tasks and Environment 
The CR robot has to learn to perform two different tasks: 
protecting another moving robot by following it closely; 
and keeping a high level of energy by capturing the 
battery packs distributed in the environment (Fig. 1). The 
entire environment is a rectangular of 4m x 3.5m 
surrounded by walls. There are 15 battery packs in green 
color distributed in the environment. The CR robot starts 
in the same initial position and orientation. The 
individual life time of each agent is 700 time steps, 
where each time step lasted 0.1s. During this time the red 
color protected robot follows a rectangular trajectory 
with a constant velocity of 0.1m/s. 

3.2 Neural Architecture 
We implemented a feed-forward neural controller with 
11, 4 and 2 units in input, hidden and output layers, 
respectively. The inputs of neural controller are the angle 

(Abat), distance (Dbat) and color (Cbat) of the nearest 
battery pack, the angle (Arob) and color (Crob) of the 
protected robot, the sensor readings of five proximity 
sensors (PSi) and the distance sensor (DS) in the front of 
CR robot. The five proximity sensors are angled as 
shown in Fig. 3. The egocentric angle to the protected 
robot or nearest battery pack varies from 0 to 1 where 0 
corresponds to 45o to the right and 1 to 45o to the left. 
The value of these neurons becomes -1 when the 
protected robot becomes invisible or there is no battery 
pack in the visual field. The proximity sensors can 
measure up to 0.25m, while the distance sensor from 
0.1m to 0.8m. The proximity and distance sensor reading 
varies from 0 to 1, where 0 means no obstacle and 1 
touching the obstacle. Random noise, uniformly 
distributed in the range of +/- 5% of sensor readings, has 
been added to the angle of the nearest battery pack, angle 
of the moving robot, distance sensor and five proximity 
sensors. Because the distance to the nearest battery pack 
during the experiments is determined based on the 
number of pixels, the random noise in simulations is 
considered in the range of +/- 10%. Based on the 
characteristics of CR visual sensor, in simulations, the 
visual distance to the nearest battery pack is limited up to 
1.2m. 

 
 

Fig. 1. Environment. 
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Fig. 2. Pareto optimal solutions of different generations. 
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3.3 Evolution 

For any evolutionary computation technique, a 
chromosome representation is needed to describe each 
individual in the population. The genome of every 
individual of the population encodes the weight 
connections of neural controller. The genome length is 
52 and the connection weights ranged from -10 to 10. For 
the protecting task, the target distance dt between the CR 
robot and the protected robot is considered 0.3m. In order 
to minimize the difference between the target and real 
distance dr the fitness, f1, is considered as follows: 
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where max_st is the maximum number of steps.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The fitness of battery capturing task, f2, is simply the 

number of battery packs captured during the individual 
lifetime. If an individual happens to hit the protected 
agent or the wall, the trial is terminated and a low fitness 
is attached. Therefore, such individuals will have a low 
probability to survive. The set of genetic parameters used 
are: Nger=100, Npop=50, σshared=0.4.  
 

4. Results 
In this section, we first discuss the best solutions 

obtained from the MOEA in terms of multiple task 
performance. All the simulations were performed in a 
Pentium 4 3.2GHz computer. 
Fig. 2 shows the Pareto optimal front for generations 1, 
30 and 100, averaged for five different runs of MOEA. 
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Fig. 3. CR multiple task performance (Box3). (a) CR trajectory. (b) Unit activation. (c) Hinton diagram of 
connection weights. 



During the first 30 generations there is a great 
improvement on the quality and distribution of Pareto 
optimal solutions. From this figure, it can be deduced 
that MOEA is equally capable of finding the best solution 
for each objective when two conflicting objectives are 
considered, simultaneously. 

The behavior of CR controlled by the neural controller 
of Box 3 solution is shown in Fig. 3(a). The CR robot, 
while follows the protected agent, captured eight of the 
battery packs distributed in the environment. Fig. 3(b) 
shows that all sensory units are activated during the CR 
motion. The proximity and distance sensors helped the 
CR robot not to hit the protected robot while it moves 
very close and perpendicular to the moving direction of 
the protected robot (around 150 steps and 575 steps). The 
Hinton diagram of Box 3 neural controller (Fig. 3(c)) 
shows the Dbat has strong weight connections with hidden 
units. This leads us to the conclusion that CR robot 
switches between two tasks based on the activation of 
Dbat unit.  
 
4.1 Neural and Task Complexity 
 
In the following, the results of applying MOEA to evolve 
efficient neural controllers are presented. In difference 
from previous approaches, where the fitness function of 
obstacle avoidance task and the structure of neural 
controller are included in a single fitness function, we 
considered the structure of the neural controller as a 
separate objective function. The complexity of evolved 
neural structure generated by MOEA could be also used 
as an index to measure empirically the task complexity.  

In addition of 52 genes encoding the weight 
connections of the neural network, the genome encodes 
15 binary genes (11 for sensory input neurons and 4 for 
the hidden neurons), which indicate if an input or hidden 
unit exists in the network or not. 

The objective function f3 is considered as follows: 
hi nrnrf +=3                              (2) 

where nri ,nrh are the number of input and hidden units.  
Fig. 4 shows that as the neural controller complexity 

increases, the solutions move to the upper-left corner, 
which means a better performance. Not surprisingly, the 
most complex neural networks control the CR robot to 
perform both tasks by switching between them based on 
the environment conditions. The neural network has 
seven units in the input and hidden layers and the CR 
robot captured fourteen battery packs while trying to 
keep a short distance from the protected robot. In 
addition, the number of units to complete only the 
protecting task is larger than that of battery capturing 
task, five and four units, respectively.  

 

 
Fig. 4. Performance of neural controllers with different number of 
sensory and hidden units. 
 
5.  Conclusion 
 

This paper has experimentally investigated the 
effectiveness of applying MOEA to address the robot 
multiple tasks performance problem. We considered two 
different tasks for the CR robot that has to protect 
another robot and capture the distributed battery packs. 
In particular, we demonstrated that in a single run of 
MOEA are generated robust neural controllers with 
completely different characteristics ranging from 
performing each of all considered tasks to simultaneously 
performing different tasks by flexibly switching between 
them. In addition, the MOEA generated efficient neural 
controllers with minimum number of sensory and hidden 
units for multiple tasks performance.  
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