

Robot multiple tasks performance and neural complexity

Genci Capi1 and Koco Bode2

1Faculty of Information Engineering

Fukuoka Institute of Technology
3-30-1 Wajiro-Higashi, Higashi-ku, Fukuoka, 811-0195, Japan

2 Faculty of Mechanical Engineering

Polytechnic University of Tirana
Sheshi Nene Tereza, Tirana, Albania

capi@fit.ac.jp

Abstract
This paper presents a new method for multiple tasks
performance based on multiobjective evolutionary
algorithm. In order to verify the effectiveness, the
proposed method is applied to evolve neural controllers
for the Cyber Rodent robot that has to switch properly
between two different tasks. Furthermore, the tasks and
neural complexity are analyzed by including the neural
structure as a separate objective function. Results using
Cyber Rodent robot show that multiobjective-based
evolutionary method can be applied effectively for
generating neural networks controlling the robot to
perform multiple tasks, simultaneously.

KEY WORDS
Evolutionary robotics, neural controller, task complexity.

1. Introduction

Traditionally, the research on intelligent agents has
mainly focused on evolution or learning of individual
perceptual-motor and cognitive tasks. Nevertheless,
intelligent agents operating in everyday life environments
often are required to perform multiple tasks
simultaneously or in rapid alternation, which is a
challenge even for humans and primates.

Several approaches in the literature have been proposed
to address robot multiple tasks performance problem. Up
to now the standard methodology in machine learning
has been to break large problems into small, independent
subproblems, learn the subproblems separately, and then
recombine the learned pieces [1]. In addition to learning,
evolution of neural controllers is well known for
providing a family of naturally-inspired algorithms which
can successfully address a wide range of robot behavior
learning problems ([2], [3]). In evolutionary robotics,

different constraints and objectives are handled as
weighted components of the fitness function ([4], [5]),
applying Single Objective Evolutionary Algorithm
(SOEA).

This article presents a novel approach for robot multiple
tasks performance based on Multiobjective
Evolutionary Algorithm (MOEA) ([6]). Unlike previous
methods, in the experiments presented here, each task is
considered as a separate objective function.
Nondominated Sorting Genetic Algorithm (NSGA) ([7])
is used to generate the Pareto set of neural networks.

In this method, we evolved one single neural controller
for multiple tasks performance, considering relevant
information of each task as sensory inputs. Therefore, as
the number of tasks increases, the neural controllers
become more complex. This makes the evolution process
difficult. In addition, the hardware implementation of
evolved neural controllers may result in poor
performance due to the increased error in sensory data. In
order to further investigate if the MOEA can also
generates efficient neural controllers for multiple tasks
performance; the structure of neural network is added as
a separate objective function.

Simulation and experimental results show a good
performance of the proposed method. The non-
dominated optimal Pareto neural controllers have a good
distribution and CR robot behavior varies from
completing each of both considered tasks to flexibly
switching between them. Therefore, as a specific
contribution of proposed method is that in a single run of
MOEA are generated agents with completely different
behaviors, making it possible to select the appropriate
neural controller based on our preferences. Moreover,
efficient neural controllers with appropriate sensory
inputs are selected through the course of evolution.

2. NSGA

A real number NSGA was employed to evolve the neural
controller. In [8], the authors compared the NSGA with
four others multiobjective evolutionary algorithms using
two test problems. The NSGA performed better than the
others did, showing that it can be successfully used to
find multiple Pareto-optimal solutions. In NSGA, before
selection is performed, the population is ranked on the
basis of domination using Pareto ranking. All
nondominated individuals are classified in one category
with a dummy fitness value, which is proportional to the
population size [7]. After this, the selection, crossover,
and mutation usual operators are performed.
In the ranking procedure, the nondominated individuals
in the current population are first identified. Then, these
individuals are assumed to constitute the first
nondominated front with a large dummy fitness value [7].
The same fitness value is assigned to all of them. In order
to maintain diversity in the population, a sharing method
is then applied. Afterwards, the individuals of the first
front are ignored temporarily and the rest of population is
processed in the same way to identify individuals for the
second nondominated front. A dummy fitness value that
is kept smaller than the minimum shared dummy fitness
of the previous front is assigned to all individuals
belonging to the new front. This process continues until
the whole population is classified into nondominated
fronts. Since the nondominated fronts are defined, the
population is then reproduced according to the dummy
fitness values. As the individuals in the first front have
higher fitness value, they always get more copies than the
rest of the population.

3. Multiobjective Evolution of Neural

Controllers

3.1 Tasks and Environment
The CR robot has to learn to perform two different tasks:
protecting another moving robot by following it closely;
and keeping a high level of energy by capturing the
battery packs distributed in the environment (Fig. 1). The
entire environment is a rectangular of 4m x 3.5m
surrounded by walls. There are 15 battery packs in green
color distributed in the environment. The CR robot starts
in the same initial position and orientation. The
individual life time of each agent is 700 time steps,
where each time step lasted 0.1s. During this time the red
color protected robot follows a rectangular trajectory
with a constant velocity of 0.1m/s.

3.2 Neural Architecture
We implemented a feed-forward neural controller with
11, 4 and 2 units in input, hidden and output layers,
respectively. The inputs of neural controller are the angle

(Abat), distance (Dbat) and color (Cbat) of the nearest
battery pack, the angle (Arob) and color (Crob) of the
protected robot, the sensor readings of five proximity
sensors (PSi) and the distance sensor (DS) in the front of
CR robot. The five proximity sensors are angled as
shown in Fig. 3. The egocentric angle to the protected
robot or nearest battery pack varies from 0 to 1 where 0
corresponds to 45o to the right and 1 to 45o to the left.
The value of these neurons becomes -1 when the
protected robot becomes invisible or there is no battery
pack in the visual field. The proximity sensors can
measure up to 0.25m, while the distance sensor from
0.1m to 0.8m. The proximity and distance sensor reading
varies from 0 to 1, where 0 means no obstacle and 1
touching the obstacle. Random noise, uniformly
distributed in the range of +/- 5% of sensor readings, has
been added to the angle of the nearest battery pack, angle
of the moving robot, distance sensor and five proximity
sensors. Because the distance to the nearest battery pack
during the experiments is determined based on the
number of pixels, the random noise in simulations is
considered in the range of +/- 10%. Based on the
characteristics of CR visual sensor, in simulations, the
visual distance to the nearest battery pack is limited up to
1.2m.

Fig. 1. Environment.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15

f2

f1

Gen 1

Gen 30

Gen 100

Fig. 2. Pareto optimal solutions of different generations.

Box1 Box2 Box3 Box4

Box5

3.3 Evolution

For any evolutionary computation technique, a
chromosome representation is needed to describe each
individual in the population. The genome of every
individual of the population encodes the weight
connections of neural controller. The genome length is
52 and the connection weights ranged from -10 to 10. For
the protecting task, the target distance dt between the CR
robot and the protected robot is considered 0.3m. In order
to minimize the difference between the target and real
distance dr the fitness, f1, is considered as follows:

∑
=

−=
st

i

i
r

i
t ddf

max_

1
1 (1)

where max_st is the maximum number of steps.

The fitness of battery capturing task, f2, is simply the

number of battery packs captured during the individual
lifetime. If an individual happens to hit the protected
agent or the wall, the trial is terminated and a low fitness
is attached. Therefore, such individuals will have a low
probability to survive. The set of genetic parameters used
are: Nger=100, Npop=50, σshared=0.4.

4. Results
In this section, we first discuss the best solutions

obtained from the MOEA in terms of multiple task
performance. All the simulations were performed in a
Pentium 4 3.2GHz computer.
Fig. 2 shows the Pareto optimal front for generations 1,
30 and 100, averaged for five different runs of MOEA.

Initial CR
robot position

Abat
Dbat
Cbat
Arob
Crob
PS1
PS2
PS3
PS4
PS5
DS

H2

H3
H4

H1

Rmotor

Lmotor

time step

(b)

 Abat Dbat Cbat Arob Crob PS1 PS2 PS3 PS4 PS5 DS Rmotor Lmotor
(c)

(a)

Fig. 3. CR multiple task performance (Box3). (a) CR trajectory. (b) Unit activation. (c) Hinton diagram of
connection weights.

During the first 30 generations there is a great
improvement on the quality and distribution of Pareto
optimal solutions. From this figure, it can be deduced
that MOEA is equally capable of finding the best solution
for each objective when two conflicting objectives are
considered, simultaneously.

The behavior of CR controlled by the neural controller
of Box 3 solution is shown in Fig. 3(a). The CR robot,
while follows the protected agent, captured eight of the
battery packs distributed in the environment. Fig. 3(b)
shows that all sensory units are activated during the CR
motion. The proximity and distance sensors helped the
CR robot not to hit the protected robot while it moves
very close and perpendicular to the moving direction of
the protected robot (around 150 steps and 575 steps). The
Hinton diagram of Box 3 neural controller (Fig. 3(c))
shows the Dbat has strong weight connections with hidden
units. This leads us to the conclusion that CR robot
switches between two tasks based on the activation of
Dbat unit.

4.1 Neural and Task Complexity

In the following, the results of applying MOEA to evolve
efficient neural controllers are presented. In difference
from previous approaches, where the fitness function of
obstacle avoidance task and the structure of neural
controller are included in a single fitness function, we
considered the structure of the neural controller as a
separate objective function. The complexity of evolved
neural structure generated by MOEA could be also used
as an index to measure empirically the task complexity.

In addition of 52 genes encoding the weight
connections of the neural network, the genome encodes
15 binary genes (11 for sensory input neurons and 4 for
the hidden neurons), which indicate if an input or hidden
unit exists in the network or not.

The objective function f3 is considered as follows:
hi nrnrf +=3 (2)

where nri ,nrh are the number of input and hidden units.
Fig. 4 shows that as the neural controller complexity

increases, the solutions move to the upper-left corner,
which means a better performance. Not surprisingly, the
most complex neural networks control the CR robot to
perform both tasks by switching between them based on
the environment conditions. The neural network has
seven units in the input and hidden layers and the CR
robot captured fourteen battery packs while trying to
keep a short distance from the protected robot. In
addition, the number of units to complete only the
protecting task is larger than that of battery capturing
task, five and four units, respectively.

Fig. 4. Performance of neural controllers with different number of
sensory and hidden units.

5. Conclusion

This paper has experimentally investigated the
effectiveness of applying MOEA to address the robot
multiple tasks performance problem. We considered two
different tasks for the CR robot that has to protect
another robot and capture the distributed battery packs.
In particular, we demonstrated that in a single run of
MOEA are generated robust neural controllers with
completely different characteristics ranging from
performing each of all considered tasks to simultaneously
performing different tasks by flexibly switching between
them. In addition, the MOEA generated efficient neural
controllers with minimum number of sensory and hidden
units for multiple tasks performance.

References:
[1] A. Waibel, H. Sawai, and K. Shikano, “Modularity and

scaling in large phonemic neural networks,” IEEE
Transactions on Acoustics, Speech and Signal Processing,
vol. 37, no. 12, pp.1888-98, 1989.

 [2] S. Nolfi, “Evolving robots able to self-localize in the
environment: The importance of viewing cognition as the
result of processes occurring at different time scales,”
Connection Science, vol. 14, no. 3, pp. 231-244, 2002.

[3] G. Capi, and K. Doya, "Evolution of neural
architecture fitting environmental dynamics,"
Adaptive Behavior, vol. 13, no. 1, pp.53-66, 2005.

[4] D. Floreano, and F. Mondada, “Evolution of homing
navigation in a real mobile robot,” IEEE Transactions on
Systems, Man, and Cybernetics-Part B, vol. 26, pp. 396-407,
1996.

[5] D. Cliff, and G. F. Miller, “Co-evolution of pursuit and
evasion II: Simulation methods and results”, From animals
to animats 4, pp. 506-515, 1996.

[6] K. Deb, Multi-Objective Optimization using Evolutionary
Algorithms, John Wiley & Sons, Chichester, UK, 2001.

[7] N. Srivinas, and K. Deb, “Multiobjective optimization using
non-dominated sorting in genetic algorithms”, Evolutionary
Computation, vol. 2, no. 3, pp. 279-285, 1995.

[8] A. H. F. Dias and J. A. de Vasconcelos, "Multiobjective
genetic algorithms applied to solve optimization problems,"
IEEE Transactions on Magnetic, vol. 38, no. 2, pp. 1133-
1136, 2002.

