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Abstract

In this paper, an iterative learning control (ILC)
scheme is presented for linear time-variant continuous
multi-variable systems based on two-dimensional (2-D)
system theory. Three ILC schemes are discussed, and
the corresponding convergence and effectiveness are
proved where only the structure of 2-D system model,
the property of λ -norm, and the Bellman-Gronwall in-
equality are employed. Two numerical simulation ex-
amples are included to validate the effectiveness of the
proposed ILC procedures.

1. Introduction and Problem Formulation

Iterative learning control (ILC) was firstly intro-
duced in 1984 by Arimoto et al. [1], and it has generated
considerable research interest over the past years. The
objective of ILC is to determine a control input itera-
tively, resulting in the plant’s ability to track the given
reference signal or the output trajectory over a fixed
time interval. Hence, the most widely used ILC scheme
is the PID-type scheme because this enables the conven-
tional PID-like system for processing the tracking error
[1]-[4]. However in [5], Geng et al. pointed that all
PID-type ILC schemes inevitably suffer from a tight re-
striction. Moreover, the understanding of the structure
and parameters of the unknown systems cannot be di-
rectly increased through the PID-type learning scheme
because it is difficult to generalize the obtained results
from a particular task to other similar tasks [6].

In fact, one of the main difficulties that ILC suffers
is to establish a suitable mathematical model to clearly
describe the dynamics of the control system and the be-
havior of the learning process [5]-[7]. Two-dimensional

∗Supported by the National Science Foundation of China
(60374001), and the Ministry of Education of China (20030006003).

(2-D) model provides an excellent mathematical plat-
form due to its two independent dynamic process [7]-
[8], and hence 2-D system theory is introduced to ILC
schemes.

In this paper, we discuss ILC problem for the fol-
lowing linear time-variant continuous system:

ẋ(t) = A(t)x(t)+B(t)u(t)
y(t) = C(t)x(t)

(1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are the state vec-
tor, the input vector, the output vector, respectively, and
A(t),B(t),C(t) are real time-variant matrices of appro-
priate dimensions that can be estimated. The boundary
condition is x(0) = x0.

Then, the ILC problem we are dealing with is stated
as follows. Given system (1) with boundary condition
x(0) = x0, iteratively find an appropriate control input
{u(t),0 ≤ t ≤ T} such that the system output follows
the reference trajectory yd(t) ∈ Rp,0 < t ≤ T , i.e.,

sup
0<t≤T

‖y(t)− yd(t)‖< ε

where ε > 0 is a required tolerance, and yd(0) =C(0)x0.
Since the system matrices are not fully known, we are
required to derive an ILC technique. In this paper, 2-
D system theory is used to solve the above-mentioned
problem. Main difficulty we solve is to establish a suit-
able 2-D system model to describe the dynamics of the
control system and the behavior of the learning process,
and a 2-D continuous-discrete Roesser’s model is suc-
cessfully derived by using the derivative of output track-
ing error instead of direct output tracking error.

2. ILC Schemes for Linear Time-Variant Con-
tinuous Systems

Suppose that k denotes the learning iteration, then
a general ILC scheme is given as u(t,k +1) = u(t,k)+



∆u(t,k). Sequentially system (1) can be modeled as the
following 2-D time-variant form

∂x(t,k)
∂ t = A(t)x(t,k)+B(t)u(t,k)

y(t,k) = C(t)x(t,k)
(2)

The boundary conditions for system (2) are given as
x(0,k) = x0 for k = 0,1,2, · · · , and u(t,0) = u0(t) for
t ∈ [0,T ]. If yd(t) and C(t) are differentiable for t ∈
[0,T ], denote

e(t,k) = yd(t)− y(t,k)

ξ (t,k) = ∂e(t,k)
∂ t

η(t,k) = x(t,k +1)− x(t,k)
(3)

Thus, we can obtain

∂η(t,k)
∂ t = ∂ (x(t,k+1)−x(t,k))

∂ t
= A(t)η(t,k)+B(t)∆u(t,k)

(4)

ξ (t,k +1)−ξ (t,k) = ∂ (e(t,k+1)−e(t,k))
∂ t

=− ∂ (y(t,k+1)−y(t,k))
∂ t

=−[C(t)A(t)+Ċ(t)]η(t,k)
−C(t)B(t)∆u(t,k)

(5)
Equations (4) and (5) can be written in compact form

[ ∂η(t,k)
∂ t

ξ (t,k +1)

]
=

[
A(t) 0

−C(t)A(t)−Ċ(t) I

][
η(t,k)
ξ (t,k)

]

+
[

B(t)
−C(t)B(t)

]
∆u(t,k)

(6)
Applying the following ILC scheme

∆u(t,k) = K(t)ξ (t,k) (7)

we can derive a system with respect to the derivative
of control error in accordance with the 2-D continuous-
discrete Roesser’s model

[ ∂η(t,k)
∂ t

ξ (t,k +1)

]

=
[

A(t) B(t)K(t)
−C(t)A(t)−Ċ(t) I−C(t)B(t)K(t)

][
η(t,k)
ξ (t,k)

]

(8)
The boundary conditions for (8) are η(0,k) = 0 for k =
0,1,2, · · · and finite ξ (t,0) for t ∈ [0,T ]. Also, suppose
that there exists a positive number LT10 such that the
following inequality holds:

∥∥∥∥
[

A(t) B(t)K(t)
0 0

]∥∥∥∥≤ LT10 f or t ∈ [0,T ] (9)

Thus, the following theorem can be proved by employ-
ing the structure of 2-D system model, the property of
λ -norm, and the Bellman-Gronwall inequality.

Theorem 1. For a 2-D ILC model (2), suppose that
both the desired output yd(t) and system matrix C(t)
are differentiable for t ∈ [0,T ]. If

sup
0≤t≤T

∥∥∥∥
[

0 0
−C(t)A(t)−Ċ(t) I−C(t)B(t)K(t)

]∥∥∥∥ < 1

(10)
then the ILC scheme

u(t,k +1) = u(t,k)+K(t)
[

dyd(t)
dt

− ∂y(t,k)
∂ t

]
(11)

can ensure that lim
k→∞

e(t,k) = 0 for t ∈ [0,T ].

According to Theorem 1, algorithm 1 is introduced.
Algorithm 1:
1). The system matrices A(t),B(t),C(t), the reference
output trajectory yd(t), the required form φ(t) of the
whole resulting error matrix I−C(t)B(t)K(t), and the
trajectory tolerance ε > 0 are given for t ∈ [0,T ].
2). Let k = 0, u0(t) = 0, x(0) = x0, K(t) =
(C(t)B(t))T [C(t)B(t)(C(t)B(t))T ]−1(I−φ(t)).
3). According to system (2), calculate y(t,k). If
sup

0<t≤T
‖y(t,k)− yd(t)‖ ≥ ε , then calculate u(t,k+1) ac-

cording to (11), else go to step 5).
4). k = k +1, return to step 3).
5). End.

To improve the learning efficiency, a modifica-
tion of learning scheme (7) is given as: ∆u(t,k) =
−K1(t)η(t,k)+ K2(t)ξ (t,k). Then, the system (8) can
be formulated as

[ ∂η(t,k)
∂ t

ξ (t,k +1)

]
=

[
A11(t) A12(t)
A21(t) A22(t)

][
η(t,k)
ξ (t,k)

]
(12)

where submatrices are given as A11(t) = A(t) −
B(t)K1(t), A12(t) = B(t)K2(t), A21(t) = −C(t)A(t)−
Ċ(t) + C(t)B(t)K1(t), A22(t) = I −C(t)B(t)K2(t). If
C(t)B(t) has uniform full-row rank for t ∈ [0,T ], then
we have

K̂1(t) = (C(t)B(t))+[C(t)A(t)+Ċ(t)]
K̂2(t) = (C(t)B(t))+

so that −C(t)A(t)− Ċ(t) +C(t)B(t)K̂1(t) = 0 and I−
C(t)B(t)K̂2(t) = 0, where (·)+ represents the Moore-
Penrose inverse of matrix. Set K1(t) = K̂1(t),K2(t) =
K̂2(t), and hence we have ξ (t,1) = 0 no matter what
ξ (t,0) is. Then, we can obtain e(t,1) = 0 for t ∈ [0,T ]
based on the initial condition yd(0) = C(0)x0.

Theorem 2. For a 2-D ILC model (2), if C(t)B(t) has
uniform full-row rank for t ∈ [0,T ], then there exists an



ILC scheme

u(t,k +1) = u(t,k)− K̂1(t)[x(t,k +1)− x(t,k)]

+K̂2(t)
[

dyd(t)
dt − ∂y(t,k)

∂ t

]

(13)
that can drive the control error to zero for the whole
reference output trajectory after only one learning trial.

Though Theorem 2 provides an effective ILC scheme
(13), x(t,k +1) is not available, and hence further mod-
ification is needed. If system matrices of (1) are accu-
rately known, then from equations (2) and (13), we can
derive

∂x(t,k+1)
∂ t = [A(t)−B(t)K̂1(t)]x(t,k +1)

+B(t)[I− K̂2(t)C(t)B(t)]u(t,k)
+B(t)K̂1(t)x(t,k)+B(t)K̂2(t)×[

dyd(t)
dt − (C(t)A(t)+Ċ(t))x(t,k)

]
(14)

Therefore, we can apply control law

û(t) = [I− K̂2(t)C(t)B(t)]u(t)+ K̂1(t)x(t)

+K̂2(t)
[

dyd(t)
dt − (C(t)A(t)+Ċ(t))x(t)

] (15)

to the following system

ẋ(t) = [A(t)−B(t)K̂1(t)]x(t)+B(t)û(t)
y(t) = C(t)x(t)

(16)

which is the state feedback form of system (1). Hence,
the output of the closed-loop system is identical with the
reference output, namely, y(t) = yd(t), t ∈ [0,T ]. This
result can be directly verified by the response formula
of system (16). Thus, the following theorem can be
proved.

Theorem 3. For a 2-D ILC model (2), if the matrix
C(t)B(t) has uniform full-row rank for t ∈ [0,T ], then
the following ILC scheme

u(t)⇐ û(t)− K̂1(t)x̂(t) (17)

can drive the control error to zero for the whole refer-
ence output trajectory after only one learning iteration,
where x̂(t) is the state vector of system (16).

Similarly, we give the second algorithm based on
Theorem 3.
Algorithm 2:
1). For t ∈ [0,T ], the system matrices A(t),B(t),C(t),
the reference output trajectory yd(t), the initial input
sequence u(t), and the initial state vector of system
x(0) = x0 are given.
2). Calculate K̂1(t), K̂2(t), and measure x(t),y(t) from
system (1).
3). Use (15) to calculate û(t), then apply û(t) to system
(16) and measure x̂(t).
4). Apply control û(t)− K̂1(t)x̂(t) to system (1).

3. Examples

Example 1: Consider the ILC problem for the fol-
lowing linear time-variant continuous system:

ẋ(t) =
[−0.1cos(t0.2) 3

0.02t 10sin(t)

]
x(t)

+
[

0.027t +1
0.12

]
u(t)

y(t) =
[
0.45 −0.001t

]
x(t)

(18)

where x(0) = [0 0]T , and the matrix C(t)B(t) has uni-
form full-row rank for t ∈ [0,1]. The desired output is
given as yd(t) = 12t2(1− t). Using Algorithm 1, we
set the initial input sequence of ILC as u(t,0) = 0, and
let K(t) = 0.6(C(t)B(t))T [C(t)B(t)(C(t)B(t))T ]−1. Ad-
ditionally, the accuracy of tracking is evaluated by the
following total square error of tracking:

S =
∫ 1

0
[yd(τ)− y(τ)]2dτ

Figure 1 shows the tracking error performance of the
ILC system output at different time-steps and iterations,
and Figure 2 performs the curves of the total square er-
ror of tracking in the process of Algorithm 1 being iter-
atively executed. From Figure 1-2, it can be concluded
that the convergence rate of Algorithm 1 is high and the
output is capable of tracking the desired trajectory ac-
curately within few iterations.
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Figure 1: (Example 1) Tracking error performance
of ILC system output using Algorithm 1.
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Figure 2: (Example 1) Total square error of differ-
ent iterations using Algorithm 1.



Example 2: To demonstrate Algorithm 2, consider
the following linear time-variant continuous system:

ẋ(t) =
[

0.18 0
0.02t −0.5

]
x(t)+

[
0.1

0.01t +2

]
u(t)

y(t) =
[−0.52 0

]
x(t)

(19)

where x(0) = [0 0]T , and the matrix C(t)B(t) has uni-
form full-row rank for t ∈ [0,1]. The desired output
is given as yd(t) = sin(πt). Here, provided that the
accurate information on the system parameters in sys-
tem (19) is unavailable, and only its estimated system is
given as

ẋ(t) =
[

0.2 0
0.02t −0.46

]
x(t)+

[
0.13

0.015t +2.1

]
u(t)

y(t) =
[−0.54 −0.01

]
x(t)

(20)
Despite of this situation, Algorithm 2 is still effective.
Figure 3 shows the tracking performance of the ILC sys-
tem output at different time-steps and iterations. Also,
Figure 4 describes the curves of total square error of
tracking in the process of Algorithm 2 being iteratively
executed. From Figure 3-4, it can be noticed that it takes
few iterations for Algorithm 2 to drive the tracking error
to a very low level for the whole desired output. More-
over, this simulation result demonstrates that Algorithm
2 is robust with respect to small perturbations of system
parameters.
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Figure 3: (Example 2) Tracking error performance
of the system output using Algorithm 2.
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Figure 4: (Example 2) Total square error of differ-
ent iterations using Algorithm 2.

4. Conclusions

Main difficulty of ILC is to establish a suitable
mathematical model to describe the dynamics of the
control system and the behavior of the learning process.
This paper successfully established the 2-D continuous-
discrete Roesser’s model with respect to the derivative
of the output tracking error. Then, three ILC schemes
were given, and sufficient conditions for convergence of
these three learning schemes were presented. Example
1-2 validated that these ILC procedures were effective
and robust with respect to small perturbations of system
parameters.
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