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Abstract
Humans can generate accurate and appropriate mo-

tor commands in various and even uncertain environ-
ments. MOSAIC (MOdular Sellection And Identifica-
tion for Control) was originally proposed to describe
such human ability, but it includes some complex and
heuristic procedures. In this article, we present an
alternative and probabilistic model of MOSAIC (p-
MOSAIC) as a mixture of normal distributions, and
an online EM-based learning method for its predic-
tors and controllers. A theoretical consideration shows
that the learning rule of p-MOSAIC corresponds to
that of MOSAIC except for some points mostly re-
lated to the learning of controllers. The results of ex-
periments using synthetic datasets demonstrate some
practical advantages of p-MOSAIC. One is that the
learning rule of p-MOSAIC stabilizes the estimation
of “responsibility.” Another is that p-MOSAIC real-
izes accurate control and robust parameter learning
in comparison to the original MOSAIC, especially in
noisy environments, due to the direct incorporation of
the noise into the model.

1 Introduction

Humans have the remarkable ability to generate ac-
curate and appropriate motor commands in various
and even uncertain environments. Studies of human
motor controls have shown that dis-adaptation and re-
adaptation to a learned environment are more rapid
than adaptation to a novel environment [5], implying
that the human motor control could be performed by
a modular structure consisting of multiple controllers
each adapting to a specific environment.

MOSAIC [1] was originally proposed to model the
motor control system with such a modular structure.
In MOSAIC, each controller is coupled with a corre-
sponding predictor, and a motor command is deter-
mined by a weighted mean of outputs of multiple con-
trollers, where the weight for each controller (responsi-
bility) is estimated based on the prediction error of the
corresponding predictor. However, MOSAIC includes

some complex and heuristic procedures that make it
difficult to understand the model.

In this study, we re-formulate MOSAIC as a prob-
abilistic model in order to construct an easily under-
standable framework. Parameters of predictors and
controllers are estimated by the online EM algorithm
[4], which maximizes the log-likelihood of the model,
given the history of control results. We also show re-
sults of computer simulations in which behaviors of re-
sponsibility and controller learning of p-MOSAIC are
compared with those of MOSAIC.

2 MOSAIC

We consider a situation where the dynamics of the
motor system is given by a discrete-time system:

x̃t+1 = Φ(x̃t, ut),

where x̃t and ut are the system state and the applied
motor command, respectively, at time t. The task of
the motor control is to make the system state x̃t to
keep on a given trajectory x∗

t .
To perform the control task, we assume M pairs of a

controller and a predictor. The aim of the controller is
to generate an appropriate motor command ut which
produces the desired state x∗

t+1. We assume that an
output of the i-th controller is represented as

ψi,t = ψ(x̃t, x
∗
t+1; vi),

where vi is the parameter of the i-th controller. The
objective of the predictor is to accurately predict the
system state at the next time step, and an output of
the i-th predictor is given by

φi,t = φ(x̃t−1, ut−1; wi),

where wi is the variable parameter of the i-th predic-
tor. Because there are M pairs of a controller and
a predictor, the responsibility for each controller (and
predictor) should be defined. The responsibility signal



λi,t for the i-th pair is defined by

λi,t =
exp(−|x̃t − φi,t|2/σ2)λ̂i,t∑M

j=1 exp(−|x̃t − φj,t|2/σ2)λ̂j,t

, (1)

where σ is a constant and λ̂i,t is a rough prediction of
the responsibility signal λi,t which is typically given
as a constant (then ignored). The responsibility rep-
resents how well each predictor reproduces the target
dynamics, then an overall motor command ũt at time
t is given by a linear combination of outputs ψi,t of
the M controllers as

ũt =
M∑
i=1

λi,tψi,t + ufb
t . (2)

Here, ufb
t is a feedback motor command, which is as-

sumed to be produced by a PID or PAD controller,
based on the difference between x∗

t and x̃t.
MOSAIC is trained by updating the parameters of

controllers and predictors. A learning rule is given by

∆vi = κλi,t
∂ψi,t

∂vi
(u∗

t − ψi,t) (3)

∆wi = κλi,t
∂φi,t

∂wi
(x̃t − φi,t), (4)

where ∆vi and ∆wi are the updates of parameters
vi, wi in a single learning step, κ is the learning rate,
and u∗

t is the desired motor command. Although it is
assumed that the desired motor command u∗

t is avail-
able in Eq. (3), this assumption is not practical. Thus,
the controller learning (3) is approximately performed
using the feedback-error learning [3] as

∆vi ≈ κλi,t
∂ψi,t

∂vi
ufb

t . (5)

3 p-MOSAIC

With a set of M predictors, x̃t = φ(x̃t−1, ũt−1; wi)+
εi, where εi is the noise of the i-th predictor, the state
prediction by integrating those predictions is given
probabilistically as a mixture of normal distributions:

p(xt|x̃t−1, ũt−1; λ, w, v)

=
M∑
i=1

λiN(xt|φ(x̃t−1, ũt−1; wi), α−1
i ),

where xt is a random variable for the predicted state at
time t, λ = (λ1, · · · , λM ) is the mixing rate vector such
that λi ≥ 0 and

∑M
i=1 λi = 1, w = (w1, · · · , wM ) is the

set of predictors’ parameters, and v = (v1, · · · , vM ) is

the set of controllers’ parameters. The motor com-
mand ũT−1 is deterministically given by Eq. (2). In
our particular experiments in Section 4, we use a linear
predictor:

φ(xt−1, ut−1; wi) = wi,xxt−1 + wi,uut−1. (6)

For a desired trajectory x∗
1:T = (x∗

1, · · · , x∗
T ) and an

actual trajectory x̃0:T = (x̃0, · · · , x̃T ), the probability
of a state sequence x1:T = (x1, · · · , xT ) of random
variables is represented as

p(x1:T |x̃0:T , x∗
1:T ; λ, w, v) =

T∏
t=1

p(xt|x̃t−1, x
∗
t ; λ, w, v),

where the random variables are assumed to be inde-
pendent of each other. Given x∗

1:T and x̃1:T , the pa-
rameters of the predictors and the controllers are de-
termined by the maximum likelihood estimation. In
the following two subsections, we describe learning
rules of the predictors and the controllers.

3.1 Learning rule of predictors

Parameters λ and w of the predictors are primarily
estimated so as to maximize the log-likelihood:

T∑
t=1

log p(xt = x̃t|x̃t−1, x
∗
t ; λ, w, v),

by means of the online EM algorithm, in which the
controller parameters v are fixed. By introducing
a hidden variable ct that indexes predictor-controller
pairs, the online free energy for any distribution of the
hidden variable, qp(ct), is defined as

FT [{qp(ct)}, λ, w]

=
T∑

t=1

ΓT (t)
〈

log
qp(ct)

p(x̃t, ct|x̃t−1, x∗
t , λ, w)

〉
qp(ct)

,

where p(x̃t, ct|x̃t−1, x
∗
t , λ, w) = N(x̃t|φct,t, α

−1
ct

)λct .
< · >qp(ct) is the expectation with respect to the dis-
tribution qp(ct), and ΓT (t) is given by

ΓT (t) =
{

1 (t = T )∏T
s=t+1 γs (0 ≤ t < T ),

where γs (0 ≤ γs < 1) is called the forgetting factor.
The online free energy is minimized by the online EM
algorithm, in which the following two steps are imple-
mented once after seeing x∗

T and x̃T−1 at a time step
T :

E-step

qp(cT ) ∝ p(x̃T , cT |x̃T−1, x
∗
T , λ, w)

∝ N(x̃t|φ(T−1)
cT ,T , 1/αcT )λ(T−1)

cT
,

where the superscript T−1 means the time step, T−1.



M-step

λ
(T )
i = (1 − ηT )λ(T−1)

i + ηT qp(cT = i) (7)

∆w
(T )
i = (1 − ηT )∆w

(T−1)
i

+ ηT καiqp(cT = i)(x̃T − φi,T )
∂φi,T

∂wi
,

(8)

where ηT is given by

ηT = 1/NT , NT = γT NT−1 + 1 (N0 = 0).

The above learning rules of p-MOSAIC involve a
smoothing effect on the sufficient statistics in the M-
step, because of the online free energy. On the other
hand, they become similar to the learning rules of MO-
SAIC in a special setting of γt = 0(t = 1, · · · , T ),
which corresponds to discarding the smoothing effect.
Even in this special setting, however, the learning rule
of p-MOSAIC contains an additional term associated
with the inverse variance αi of each predictor (Eq.
(8)), which represents the noise level of the predictor.

3.2 Learning method of controllers

The controller parameters v are primarily esti-
mated so as to maximize the log-likelihood:

T∑
t=1

log p(xt = x∗
t |x̃t−1, x

∗
t ; λ, w, v),

while the predictor parameters, λ and w, are fixed.
According to the online EM algorithm, instead of the
log-likelihood, the online free energy:

FT [{qc(ct)}, v]

=
T∑

t=1

ΓT (t)
〈

log
qc(ct)

p(xt = x∗
t , ct|x̃t−1, x∗

t ,v)

〉
qc(ct)

for any distribution of the hidden variable, qc(ct),
is minimized, where p(xt = x∗

t , ct|x̃t−1, x
∗
t , v) =

N(x∗
t |φct,t, α

−1
ct

)λct . < · >qc(ct) is the expectation with
respect to the distribution qc(ct). As an incremen-
tal minimization of the online free energy, the follow-
ing two steps are implemented once, given the desired
state x∗

T and the previous state x̃T−1:

E-step

qc(cT ) ∝ p(xT = x∗
T , cT |x̃T−1, x

∗
T , v)

∝ N(x∗
T |φ

(T−1)
cT ,T , 1/αcT )λ(T−1)

cT
.

M-step

∆v
(T )
i = (1 − ηT )∆v

(T−1)
i

+ ηT κλi
∂ψi,T−1

∂vi

M∑
j=1

αjq(cT = j)wj,u(x∗
T − φj,T ).

(9)

Here, wj,u is the predictor parameter defined in Eq.
(6). Even if the forgetting factor γt is constant at
zero, the M-step equation reduces to

∆v
(T )
i = κλi

∂ψi,T−1

∂vi

M∑
j=1

αjq(cT = j)wj,u(x∗
T − φj,T ),

which is obviously different from Eq. (3), the learning
rule of controllers in MOSAIC. The controller learning
in MOSAIC is defined as a gradient-based feedback-
error learning, which tries to minimize the time-lag
difference between the previous actual state x̃t−1 and
the previous desired state x∗

t−1. In p-MOSAIC, the
controller learning tries to minimize the difference be-
tween the current predicted state x̂t and the current
desired state x∗

t . Moreover, the learning rule of p-
MOSAIC includes the inverse variance αj (Eq. (9)).
These two points arise from the difference in the learn-
ing criteria between MOSAIC and p-MOSAIC.

4 Simulation studies

To compare p-MOSAIC with MOSAIC, we simu-
lated the control of a spring-mass-damper system. The
desired trajectory of the object (mass position) fol-
lowed a mixture of sine waves for 12 seconds. To show
the adaptability of the motor control system, environ-
ment (mass of the object M , damping B and spring
constant K) switchs every 4 sec between the following
three settings:

(M,B,K) =

 1.0, 2.0, 8.0 (0 − 4sec)
5.0, 7.0, 4.0 (4 − 8sec)
8.0, 3.0, 1.0 (8 − 12sec).

In both MOSAIC and p-MOSAIC, we prepared three
predictor-controller pairs. Observation and control
were performed at 1,000 Hz, and a single trial was
continued for 12 seconds. The predictors (6) were in-
put by the motor command, the state (position and
velocity) of the object at the present time, and output
the predicted acceleration of the object at the next
time. The controllers were input by the state at the
present time and the desired acceleration at the next
time, and output a motor command at the present
time. In this simulation, we used a PAD controller
to produce the feedback motor command. Note that
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Figure 1: The responsibility along time

our task for the spring-mass-damper system is almost
the same as in the previous work [2]. A regularization
term is introduced to the estimation of responsibility
in MOSAIC and p-MOSAIC in order to suppress any
overfitting to the noisy environment.

4.1 Responsibility

We first examined how the responsibility behaves.
Prior to the experiment, three predictor-controller
pairs were completely adapted to their own environ-
ments. Since there is no learning factor, we can com-
pare solely the estimation of the responsibility between
Eq. (7) with the forgetting factor being zero (for com-
parison), and Eq. (1). Figure 1 shows the result.
Although p-MOSAIC achieved a complete switching
of controllers in response to changes of environments,
MOSAIC sometimes failed.

4.2 Controller learning

We compared the controller learning, Eq. (9) of p-
MOSAIC, and Eq. (5) of MOSAIC, assuming the pre-
dictors were completely trained to adapt to their own
environments. To compare controller learning only,
we used Eq. (7) in both MOSAIC and p-MOSAIC to
estimate responsibility, and the forgetting factor was
fixed at zero. We examined the controller learning in
particular when the actual state x̃t is disturbed by a
noise.

Figure 2 shows the results for a small noise and a
relatively large one. When the noise level was low (up-
per panel), p-MOSAIC achieved more accurate control
than MOSAIC. When the noise level was relatively
high (lower panel), on the other hand, the learning by
MOSAIC proceeded faster, but it was substantially
unstable; hence, the performance improved due to p-
MOSAIC after about 1,000 trials. In the early learning
phase, the controller learning of p-MOSAIC proceeded
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Figure 2: Logarithm of the mean square error between
the actual and the desired trajectory vs. number of
trials

slowly due to the control of the inverse variance αi.
Because the environmental noise was large, the adap-
tive control of the inverse variance made the learn-
ing slow but stable, suggesting adaptive adjustment of
learning speed in p-MOSAIC.

5 Summary

In this study, we proposed p-MOSAIC, a proba-
bilistic model of MOSAIC, and derived learning rules
according to the online EM algorithm. P-MOSAIC
achieved an appropriate estimation of responsibility in
the predictor, and accurate control and robust learn-
ing when the controllers learned.
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