A distributed algorithm of group robots applied to maze searching
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Abstract

In this study, we proposed a simple algorithm of
group robots, which assumes to work independently
works on each of the robots. The algorithm uses lo-
cal distance information without specific centralized
control. Usually they move around randomly and in-
dividually. Whether the distance between the robots
increases beyond a constant value or decreases below
another constant switches their behavior into shrink
mode or expansion (random search), respectively. In
the shrink mode, a robot which is farthest from the
others is selected as a leader, and the others go straight
toward the leader until the distance decreases below
the value. Applying this algorithm to maze search-
ing on computer simulations, we observe interesting
properties as follows: (1) The parameter values which
switch shrink and expansion modes affect the perfor-
mance of solving the maze problem, suggesting the
important relation between the values and the struc-
tural scale of the maze. (2) Proceeding and exploring
behaviors with dividing and merging subgroups are
self-organized. This leads to better performance an
average compared with the results by a set of robots
composed of a random searching robot.

1 Introduction

Recently, robotic technologies have been developed
such as humanoid robots who can walk using two
legs, micromachines with electromagnetic oscillation,
and so on. Generally, to make them more intelligent,
more complicated algorithms and control systems are
needed. However, even an insect can show complicated
and intelligent behaviors, which suggests that a group
composed of simple and distributed agents may have
those functions. In this study, we focus on the algo-
rithm of each simple component, which shows intelli-
gent behaviors as a system. In other words, intelligent
behaviors emerge, even though each robot follows the
same and simple algorithm. Thus, there is no specific
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leader who controls the group.

Research approaches inspired by emergent intel-
ligent behaviors of swarms is called Swarm Intelli-
gence (SI)[1][2][3]. SI systems are typically made up of
a population of simple agents interacting locally with
one another and with their environment. Although
there is normally no centralized control structure dic-
tating how individual agents should behave, local in-
teractions between such agents often lead to the emer-
gence of global behavior. Representative examples of
SI systems are Ant Colony Optimization (ACO)[4] and
Particle Swarm Optimization (PSO)[5][6]. In a swarm
of insects or a school of fish, when one finds a de-
sirable path, the rest of the members will follow it in
PSO. Assuming an evaluation function over the search
space, the vector of velocity of each agent is repeat-
edly modified depending on the agent’s position with
global minimum and on the local information. As this
calculation proceeds, every agent tends to move to-
ward the position where the objective function has an
optimized value. While every agent follows a simple
and the same algorithm, the group quickly reaches to
optimized position as a group. Our study assumes the
situation in which the objective function is not clear.
We focus on clustered and searching behaviors such as
swarm intelligence without using the objective func-
tion over the field.

The purpose of this study is to propose a simple al-
gorithm in each agent distributed when the objective
function cannot be used. Each agent can utilize lim-
ited local information and communicate each other.
The key of the algorithm is the alternative modes of
expansion and shrink. Each robot always measures
the distance from each other, and notices a leader of
the group when the distance increase beyond a con-
stant. Every robot except the leader follows the leader
until the distance decreases below another constant
value (shrink mode). Then, each robot goes random
direction again (expansion mode). While the simula-
tion robots are searching in the maze, we can observe
not only the performance of how soon they reach the



goal but also emergent behaviors of robustness and
adaptability of the system. Our algorithm does not
assume centralized control structure. Thus, the sys-
tem will not stop, even if some of them are lost or
broken. And our algorithm is so simple that we can
implement it on the hardware robots easily. The most
important feature of our algorithm is random search-
ing and a clustered behavior like swarms or a school of
fish at the same time. In this study, we did computer
simulations in a maze using software robots to show
the properties of the algorithm. The parameter values
which decide mode switching are shown to be crucial
to the performance of the maze searching. Depend-
ing on the values, the system was able to reach a goal
earlier than random searching.

2 Algorithm

As a first step of our study, we constructed an agent
model such as a swarm as simple as possible, whose
algorithm is shown as follows(Fig.1): First, each robot
moves around randomly without a leader (“expantion
mode” (Fig.1-(1)). Each one assumes to go straight in
one direction until it reaches a wall, then it reflects
to another direction. The reflection angle is randomly
selected in order to avoid infinite bouncing in a dead
end. When a robot whose distance from the other
robots exceeded a constant value of a parameter (d1),
the robot becomes a leader (Fig.1-(2)). At this time,
at least two robots or more become leader’s candi-
dates. The position where the previous “expansion”
mode starts in each robot is memorized, and the dis-
tances between the position and the current position
are compared. Then the robot whose value is largest
is selected as a leader. If the distance is also the same,
it is randomly selected. This is because we think one
which was advanced larger from the previous expan-
sion should be a leader. Once the leader decided, the
other robots go straight toward the leader (“shrink
mode” (Fig.1-(3))). Only the leader keeps going before
as it does, while the other robots changes each direc-
tion toward the position of the leader and keep fol-
lowing it at an equal speed until the longest distance
between any two robots decreases below another con-
stant parameter (d2). Then, the leader is dismissed
and the group’s movement returns back to the first
free searching (Fig.1-(4)). The velocity of all motions
is assumed to be constant except when the direction is
changed, when the mode has changed, and while one
is following a leader. These procedures are repeated
and the leader is selected every time the distance ex-
ceeds d1. This algorithm expects that some robots far

from the rest may find a new way, which will promote
exploration as a group.
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Figure 1: Schematic behaviors of the algorithm

Although an obstacle or walls in the maze may also
split the group into some subgroups during searching,
there is no problem because the leader is selected in
each subgroup. As a result, two or more groups might
coexist and continue searching, which will lead to an
efficient search. When the leader is decided, the robots
those follow the leader are limited in the range that
the distance from the leader is less than the value of
the third parameter (d3). This limitation is needed
so that the effect of the robot whose position is too
far away on the selection of a next leader becomes
weaker. This may partially avoid back-and-forth mo-
tion of each group.

3 Computer simulations

3.1 Method

To examine properties of the above-mentioned al-
gorithm, we did computer simulations using software
robots in a simple maze. We observed behaviors of
robots (N=20) in the maze (Fig.2), which start at the
position in the corner and search around until they
find the goal in another corner. In addition, we mea-
sured the time (number of procedural steps) spent by
all of the robots from the start to the goal. The result
is averaged over 100 trials with different random seeds
for each combination of parameter values. When a
robot reaches the goal, it assumes to stay there with-
out becoming a leader.

The size and the width of walls of the maze is shown
as follows:map size = 500x500 dot, and wall width =
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Figure 2: map

20 dot. Parameter values are as follows unless other-
wise indicated:d1 = 60 - 140 (10 interval), d2 = 50,
d3 = d1425, Number of robots = 20, and Speed of
robots = 6 dot/step.

3.2 Time to the goal

Figure 3 shows the average number of steps until all
robots reach the goal as the value of d1 changes from
60 to 140 with fixed value of d2 and d3. The result
suggests that there exists an optimal value around 110
for d1 (When d1=110, the mean value indicates 4299
steps). When d2 changes with fixed d1 and d3, the
average steps are shown in Fig. 4 (d1=100,d3=150).
The effect of d2 on the attainment is not so clear as
dl.

8000

7000

6000

5000

4000

steps

3000

2000

1000

di

Figure 3: Average steps to the goal (d2 = 50, d3 = d1
+ 25)
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Figure 4: Average steps to the goal (d1 = 100, d3 =
150)

For comparison, we tried another set of simulations
using a swarm of robots, which do not follow our al-
gorithm but follow just individual random searching.
They do not expand or shrink together. Each robot
goes straight, reflects at the wall to a random direc-
tion, and stops when it reaches the goal. In this case,
it takes 5425 steps on the average for all of them to
reach the goal. Thus our algorithm shows better per-
formance an average.

These results show that the value of the parame-
ters, especially d1, affects the performance of solving
the maze problem, which suggests the relationship be-
tween the values and the scale of the maze. When
d1 is smaller than the width of a dead end, it will be
difficult to escape from there. To escape there and
explore other fields, d1 should be as large as the size.
When d1 is much larger than the size of the maze, a
leader is not be selected and emergent behaviors are
random like a Brownian motion. Thus, matching of
the parameter values are needed for the scales of the
maze (width of the roads, for example) to improve the
performance. Adaptation or dynamical fitting of the
parameter values are one of our future problems.

3.3 Decentralized search

We observed interesting behaviors during the maze
simulations. Two of them are shown in these subsec-
tions.

One mass of robots at first divides a few times at the
walls as the time proceeds. Then each group explores
here and there independently(Fig 5). This is one of the
most interesting features of SI, decentralized search.



Acquired information during searching about position
or evaluation, which is not communicated in current
version, would be useful to make the behavior more
intelligent.
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Figure 5: Decentralized search

3.4 Self-organized adaptation

Self-organized adaptational behaviors to circum-
stances are also observed. On the straight way they
pass through there together, each explores indepen-
dently in a closed way, and they return backward to-
gether. This is due to the shrink and expansion mech-
anism, which regularly corresponds to the searching
behavior in the maze.

Figure 6: Escape from blind alley

Decision policy of choosing a remote leader pro-
motes getting out from closed fields. Another im-
portant parameter d2 tends to limit the closest dis-
tance between the robots. While following the leader,
each distance rarely decreases less than d2 because the
speed of the leader and the others are the same. When
the leader encounters a wall, which may be in a dead-
lock, the robot will be dismissed from the leader with
the distance condition satisfied.

The behaviors such as proceeding and exploring in
the maze emerge in spite of the simple algorithm using
only local information i.e. distance from each other.
This behavior can be regarded as emergent SI. Appli-
cation to another problem, making the algorithm more
general and distributed, and hardware implementation
are also our future works.

4 Conclusion

In this study, we proposed a simple algorithm of
group robots, which independently works on each of
the robots. The algorithm uses local distance infor-
mation without specific centralized control. Applying
this algorithm to maze searching on computer simula-
tions, we observe interesting properties as follows:

(1) The values of the parameters, especially d1, affect
the performance of solving the maze problem, suggest-
ing the imporatn relation between the values and the
structural scale of the maze.

(2) Proceeding and exploring behaviors with deviding
and merging subgroups are self-organized. This may
lead to better performance compared with the results
by a set of robots composed of a random searching
robot.
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