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Abstract 
 

The power method is known as a convenient 
way to calculate eigenvectors of a matrix.  We used 
this method for calculating 3-D outer product 
expansion previously.  In this paper, we try 
calculating 3-D nonnegative outer product 
expansion by using the power method.  In order to 
perform this calculation, we add nonnegative 
constraint conditions to the repetition process of the 
power method.  Our method shows a significant 
reduction of computation time than the nonlinear 
optimization method. 
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1. Introduction 

In the field of image processing and digital 
signal processing, multi-dimensional digital filters 
are usually used.  In order to design a 
multi-dimensional digital filter, multi-dimensional 
design specification is generally reduced to a set of 
1-dimensional (1-D) specification array.  Then the 
desired multi-dimensional filter can be obtained by 
designing a set of 1-D digital filters and combining 
them each other [1]. 

3-dimensional (3-D) outer product expansion 
[2] is usually used to decompose 3-D data arrays 
into products of 1-D vectors.  This expansion is an 
extension of the singular value decomposition 
(SVD) of a matrix to a 3-D array.  To simplify the 
structure of resultant 3-D digital filter, the number 
of terms of the expansion is desired to be reduced as 
much as possible.  Therefore, such terms have to 
give least square approximation to the original 3-D 
array under some constraint conditions.  In practice, 
although a large amount of computation time is 
required to calculate that expansion, the nonlinear 
optimization method is exploited ordinarily.  We 
previously proposed the method, which uses the 
power method, for the purpose of calculating that 
3-D outer product expansion and showed the 
efficiency of our method in comparison with the 
nonlinear optimization method [3].  The power 
method is known as a basic numerical technique to 

calculate eigenvalues of a matrix [4]. 
Since the 1-D vector obtained by 3-D outer 

product expansion represents magnitude response in 
the practical digital filter design problem, every 
elements of the vector should be physically 
nonnegative.  We call this expansion 3-D 
nonnegative outer product expansion.  Though the 
nonlinear optimization method can be used to 
calculate this expansion likewise as the case of 
ordinary 3-D outer product expansion, the 
computation time is the weakness of this method 
similarly as above. 

In this paper, we try calculating 3-D 
nonnegative outer product expansion by using the 
power method.  In order to perform this calculation, 
we add nonnegative constraint conditions to the 
repetition process of the power method. 
 
2. Definition of 3-D Outer Product 

Expansion 
A NML ××  3-D array  can be 

decomposed by the 3-D outer product expansion as 
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where the expansion vectors , ,  
correspond to the singular vectors of the SVD of a 
matrix, the expansion coefficients  and the 
number of expansion terms 
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iσ
r  correspond to the 

singular values and the rank of a matrix similarly, 
and ⊗  denotes the outer product operation.  The 
expansion vectors are normalized as 
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where  , ,  show the j-th 
element of the vector , ,  respectively. 

)( jiu )( jiv )( jiw

iu iv iw
 
3. Calculation Algorithm for 3-D Outer 

Product Expansion by the Power 
Method 



The algorithm for calculating 3-D outer 
product expansion by the power method is described 
as follows [3]. 
 
Step 1. Choose the initial vectors , , 

 arbitrarily, where these vectors must be 
normalized, and the subscript p and n are set to 
zero and one respectively at the beginning of this 
repetitious procedure. 
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Step 2. The residual 3-D array  is obtained by 

subtracting sum of products of the expansion 
vectors , , , which has been calculated 
by this time, from original 3-D array  as 
follows: 
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Step 3. Calculate the ML× matrix F by 

multiplying  by vector  as 3B )( p
nw

                  The element of the matrix F can be 
represented as 
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3

p
nwBF ⋅= (4) 

),( ji

)(),,(),( )(
3 kkjiji p

n
k

wBF ∑= .        (5) 

Next, apply the power method to the 
matrix F as follows:  
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Like wise the  matrix G and the 
 matrix H are obtained by 
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where the obtained vectors , , 

 must be normalized. 
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Repeat Step 3 until the following are 

satisfied for sufficiently small value ε : 
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Step 4.  The n-th expansion vectors , 

,  are obtained from Step 3. Here, 
rename these vectors as , , . 
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The n-th coefficient  is obtained from 

inner product operation as as  
nσ
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Step 5.  After increase n and set p to zero, repeat 

this procedure from Step 1. 
 
4.  Calculation of 3-D Nonnegative Outer 

Product Expansion by the Power 
Method 
The method which we described in Section 3 

can be applied to calculation of a 3-D nonnegative 
outer product expansion by adding nonnegative 
constraint conditions to the repetition process of the 
power method.  Actually, the following steps are 
inserted into Step 3. 
 
Step A1. The repetition vector  in equation 

(6) is divided into the vector of  and 

, where the former is composed of 
positive number or zero and the latter is 
composed of negative number or zero as 
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Step A2. Calculate the norm of  and 

.  Choose the nonnegative vector  

 from these vectors by following way. 
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The vector  and  are also 
chosen as follows: 
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5. Calculation of 3-D Orthogonal O

Product Expansion 
     Since the resultant expansion terms of
outer product expansion do not satisfy orthogo
the 3-D orthogonal outer product expansion 
defined by 
 ( ),

,,
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kji
kjiijk wvuA σ         

where ijkσ  are the expansion coefficients.  
expansion can be calculated by introducing
Gram-Schmidt orthogonalization process [5]
the Step 3 of the algorithm described in Section
following procedure. 
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Step B1. Along with the Gram-Schmidt process, 
calculate the vectors , ( 1' +p

nu ) ( )1' +p
nv , 

 by subtracting the previously 

obtained quantities from vectors , 

,   respectively as 
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     Normalize the vectors in above equations 
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Step B2. By the procedure in Section 3 and the Step 

B1 in this section, vectors    
 of the equation (15) are obtained 

in    order, where m = min(L,M,N).  In case 
that L>m,    the remaining  vectors 
terms can be calculated by using 
Gram-Schmidt orthogonalization process as 
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where  are the initial vectors and the 

vectors  are to renamed as  after they 
are normalized.  Likewise vectors 

 and  are calculated. 

nu
'

nu nu

Mm vv ,,1 L+ Nm ww ,,1 L+

 
Step B3. For every combination of p, q and r, 

calculate the expansion coefficients  as pqrσ

( )rqppqr wvuA ⊗⊗= 3σ ,        (20) 

( , , ). Lp L,2,1= Mq L,2,1= Nr L,2,1=
 
     To improve in calculation time of these steps, 
a part of the Step B1 is modified.  The 
modification is described below. 

After the calculation of the expansion 
vectors , the remaining vector  
can be calculated by  
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where  is the initial vector.  The vector  
is normalized immediately, then the vector renamed 
as .  This slight modification leads to an 
improvement in calculation time. 
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6.  Experimental Results 

The following magnitude specification 

 of a 3-D digital filter design 
problem [2] is used to consider the validity of 
calculation algorithm described above.  
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The 3-D array  is constituted by 3A
( ) ).,,(,,3 kjid zyxkji hA =           (24) 

Since the magnitude specification  
is zero when , the size of the 3-D array is 
reduced to L×M×N, where 
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[3-D Outer Product Expansion] 

Table 1 shows that the calculated expansion 
coefficients by the power method give good 
approximation to those by the nonlinear 
optimization method. 
 
Table 1.  Resultant coefficients of 3-D outer 

product expansion by the nonlinear 
optimization method and the power method. 

 (L’=M’=N’=20) 

iσ
Nonlinear 
Optimization 
Method 

Power Method Relative 
Error[%]

1 2.275862E+01 2.275862E+01 0 
2 4.283573E+00 4.283573E+00 0 
3 3.025678E+00 3.025678E+00 0 
4 1.400982E+00 1.400982E+00 0 
5 1.129514E+00 1.129514E+00 0 
6 6.526013E-01 6.526013E-01 0 
7 3.698252E-01 3.698252E-01 0 
8 3.454422E-01 3.454422E-01 0 
9 3.403220E-01 3.403220E-01 0 

10 2.840046E-01 2.840046E-01 0 
11 2.598434E-01 2.598434E-01 0 
12 2.108770E-01 2.108770E-01 0 
13 2.008905E-01 2.008905E-01 0 
14 1.767691E-01 1.767691E-01 0 
15 1.535205E-01 1.535205E-01 0 
16 1.494289E-01 1.494289E-01 0 
17 1.064934E-01 1.064934E-01 0 
18 1.006265E-01 1.006265E-01 0 
19 1.002772E-01 1.002772E-01 0 
20 9.568394E-02 9.568395E-02 -6.27E-06



[3-D Nonnegative Outer Product Expansion] 

     Figure 1 illustrates the convergence property 
of the power method described in Section 4.  The 
relative error of the method, which calculates 3-D 
nonnegative outer product expansion, is about 10% 
at n=10, while the error less than 10% at n=3 in case 
of 3-D outer product expansion. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Convergence property of the power 
method. 

 

[3-D Orthogonal Outer Product Expansion] 
     Figure 2 shows the calculation time of 
modified method in Section 5 compared with the 
usual method.  In this experiments, the 3-D array is 
constructed by random integer in the range of 
[1,1000].  From the figure, the calculation time can 
be reduced slightly by using the proposed method. 
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Figure 2  Calculation time of 3-D orthogonal 

outer product expansion. 
 
 

7.  Conclusions 
     In this paper, we showed the calculation 
results of the 3-D outer product expansion, 3-D 
nonnegative outer product expansion, and 3-D 
orthogonal outer product expansion in the following 
development environment. 
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C (GNU C compiler v2.7) 
Accuracy:  

floating point of double precision type 
 
     The results lead to the following conclusions: 
(1) Using the previously proposed method to 

calculate the 3-D outer product expansion and 
the 3-D nonnegative outer product expansion, we 
obtained the expansion coefficients and vectors 
precisely. 

(2) By modifying the usual method for calculation 
of the 3-D orthogonal outer product expansion, 
the calculation time could be reduced slightly in 
comparison with the previously proposed 
method. 
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