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Abstract

In recent years, network analysis has revealed that
some real networks have the properties of small-world
and/or scale-free networks. In this study, a simple Ge-
netic Algorithm (GA) is regarded as a network where
each node and each edge respectively represent a pop-
ulation and the possibility of the transition between
two nodes. The characteristic path length with the
crossover operation, which is one of the most popular
criterion in small-world networks, shows how effective
the crossover operation is, compared to that with only
the mutation operation.

1 Introduction

There have been several theoretical results on the
properties of genetic algorithms (GAs), such as the
schemata theorem [1,2] and the asymptotic theory [3—
5]. However, GAs are not optimizers; They find a
good but not optimal solution in a short time. Such
a solution is termed a quasi-optimal solution. The
above results do not seem to explain why GAs are
good quasi-optimizers.

This study takes another approach to this problem:
We regard a GA as a network, where a node is a possi-
ble set of individuals, and investigate the connectivity
of the network from a network analytical point of view.
Network analysis has recently attracted much atten-
tion as a new method to analyze complex phenomena
in the world, where the following two properties have
been found in many real networks [6-9]: One is re-
ferred to as a small-world network, which means that
a network simultaneously has dense local connections
and short pairwise distances. The other is a scale-free
network, which means that the distribution of the or-
ders of nodes in a network has a long tail obeying the
power law.

We shed light on the former property. That is,
we analytically derive the characteristic path length
(CPL) v, defined as the shortest path length (SPL)
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between two nodes averaged over all possible pairs.
Since it is expected that a GA with a smaller CPL
takes a shorter time to find a solution, we see how the
two basic genetic operations in GAs, crossover and
mutation, affect the CPL.

2 Network of Genetic Algorithms

Although many variants of GAs have been proposed
since the original GA was born [1,2], we analyze the
simplest case as formulated below.

Each individual consists of a binary sequence of
length L. That is, we have 2% kinds of individuals.
A set of individuals defines a population. We assume
that each population has only two individuals at first
and consider more general cases later. Then, the car-
dinality of the different populations becomes

N =2E-12k ). (1)

When the generation proceeds, a population changes
by one of the two basic genetic operations, one-point
crossover or mutation. The former randomly chooses
one crossover-point from L — 1 candidates and ex-
changes the bits rightward from the point, while the
latter randomly chooses one of 2L loci (or gene-
positions) in the two individuals and inverts its bit
from 0 to 1 or vice versa. Note that we do not treat
any fitness function because we are only considering
the possibility of population-transition from one in a
generation to another in the next generation.

We regard a population as a node of a GA net-
work. Hence, the network has N nodes. Two nodes
are linked by an edge if and only if one of the two
nodes can change to the other in a one-point crossover
or mutation operation (Fig. 1).

If a network consists of only the edges from mu-
tation, it is a lattice of the 2L-dimensional hypercube
because an individual is an L-bit sequence and a popu-
lation consists of two individuals. Therefore, the path-
length of any two distinct nodes is the same as the
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Figure 1: A part of the network of a genetic algorithm.

Manhattan distance, that is, L on average. This means
that we need L generations to reach a quasi-optimal
population from an initial one.

On the contrary, the edges from crossover are short-
cuts in the network where plural bits can change at
once. It is likely that these shortcuts enable GAs to
find a quasi-optimal solution in a short time. The
purpose of this study is to evaluate quantitatively how
these shortcuts work to shorten the CPL and to clarify
their effects in GAs.

3 Characteristic Path Length

In many cases of network analysis, the CPL is nu-
merically calculated from the empirical data collected.
However, the CPL of the GA network treated here can
be derived analytically due to its simplicity, as shown
below.

One of the main ideas for derivation is to classify L
loci into four types according to how two populations
can be matched by genetic operations:

Type 1 All four genes have the same alphabet.

Type 2 The two genes of a population are the same
but the two genes of the other population are dif-
ferent.

Type 3 The two genes of each population are the
same but the two populations have different al-
phabets.

Type 4 Each population has two different genes.
That is, the genes at the locus are 0110, 1001,
0101 or 1010. The former two are termed Type
4-1 while the others Type 4-2.

Note that the crossover operation cannot change
the type of a locus and the mutation operation works
bitwise. Therefore, the loci belonging to Types 1, 2

A Gene in Population 1 g1 01010

A Gene in Population 2 g2 10001
p=g1XOR g2 11011
pl = Shifted p 11011
q=pXOR p1 0110

Figure 2: How to calculate the SPL of two nodes con-
sisting of the loci of Type 4.

and 3 respectively contribute zero, one and two for
the SPL no matter where they are located. Hence,
the SPL of two nodes is the sum of the above and the
SPL of the two shorter nodes consisting of only the
loci of Type 4. The latter for I-bit individuals can be
calculated using the following procedure, as shown in
Fig. 2:

1. Take I-bit XOR, bitwise between an individual in

a population and one in the other population and
denote it by p.

2. Take (I —1)-bit XOR bitwise between p and 1-bit
shifted p and denote it by q.

3. Count the number of 1s in q.

The other of the main ideas for derivation is to
count the number of node-pairs with the SPL M, in-
stead of evaluating the SPL of each node-pair directly.
Let the numbers of Type 1, 2, 3 and 4 in L loci be
denoted by Iy, I3, I3 and l4, and the numbers of links
in M by m1, mo, ms and my, respectively. Here,

L=11+1s+ 15+ 14, (2)
M =mq + ma + ms3 + mu, (3)
m; =0, mg=1Iy m3=2; (4)

stand by definition.
In the case of my = 0, the number of node-pairs
satisfying (3) is written as

L1201 gl22ls
Ll )
for fixed [y, I3 and I3. Since they must satisfy
l2+2l3=0 (6)
Lh4lo+iz=1L (7)
0<I3<[L/2] (8)

from (2) to (4), the ratio of the number of node-pairs
to the possible pairs for my4 = 0 is

2L |L/2] L42M—4l
ML!2 3
> D ;9
24LM 2 (L~ M+ 15)(M — 215)ll5]
3=



which is denoted by ;. Otherwise, for fixed Iy, lo,
l3 and Iy, the number of combinations of positions is
equal to

L!
1112113 4!
and the number of combinations of places where
crossover occurs is ;,1C,,,. Taking into account the
cardinality of Type 4 and the possibility that the left-

most in the Type 4 loci belongs to Type 4-1 or Type
4-2, the total number of node-pairs is written as

L12liglz9lsglat+1, m
8 ta=1Cms (11)
1115113114!
Summing up for all possible combinations of Iy, Is,
I3, l4 and my4 under the conditions (2) to (4) and my <

l4 — 1, the ratio of the number of node-pairs to the
possible pairs is written as

2L
DS

M=11y,l2,l3,la,m4

(10)

ML1211gl22ls2lit, O,y
11105113114

» (12)

which is denoted by 5. In total, the complete expres-
sion for the CPL is

U=y + . (13)

For convenience, we show © for some L’s in Table 1.
Since the CPL of the network consisting of only the
edges from mutation is L, the ratio shows how the
crossover operation shortens the CPL. We see that the
CPL is rather large even when the edges from crossover
are added.

L v ratio

3 | 2.3359 | 0.7786
8 | 6.5501 | 0.8188
13 | 10.887 | 0.8375
18 | 15.253 | 0.8474
28 | 24.000 | 0.8571
48 | 41.500 | 0.8646
68 | 59.000 | 0.8676

Table 1: The CPL ¥ for some L’s.

Note that the path length is calculated in Type 4
as if the individuals in a population are ordered. How-
ever, the CPL ¥ of the network where individuals in a
population are ordered is expressed as

2N L
P L (14)
N
where v is the true CPL and N = 22L [10,11]. Hence,

the difference is negligible when L is large.

4 Inductive Approach

As is expected, it is not easy to discuss more general
cases such that a population consists of K individuals
for K > 2 and the exact analysis is to be done yet.
Instead, we give an upper bound of the CPL for a
general K > 2, by taking an inductive approach.

In order to make our new method clear, we first dis-
cuss the method for the case of K = 2. Let a pair of
populations of length [ be expressed as a 4 x [ matrix
denoted by II;, where the first and second rows cor-
respond to one population and the third and fourth
do the other. Some matrices represent a pair of pop-
ulations any of whose shortest paths includes one or
more crossover operations, which we term C matrices.
The others are called M matrices. Let the cardinal-
ity of C matrices be denoted by p.(I) and that of M
matrices by p,,(l). Obviously, p.(l) + pm(l) = 2%.
We denote the SPL of each of C matrices by r.(l,j),
j=1,...,p:(]), and the SPL of each of M matrices by

Tm(l,1),9=1,...,pm(l). Then, U is expressed as
~qe(l) +gm(l
U = %7 (15)
where ¢.(1) and ¢, (1) are defined as
pe(l)
QC(Z) = Z Tc(lvj)v (16)
3=0
Pm (1)
gm (1) = rm (1,4). (17)
i=0

Let us consider the populations of length [+ 1. Any
pair of them is expressed as one of the following 16
matrices,

0 0 0 1
0 0 0 1

Hlo ’ Hlo ) Hl]_ PRI Hll (18)
0 1 0 1

Using this property, we can derive the update equation
as

pc(l + 1) = 16pc( ) + 4pm(l)a (19)
pm(l+1) = 12py (1), (20)
Gl +1) = 16¢c(1) + 4gm(1) + 14pc(1), (21)
gm (1 + 1) = 125, (1) + 12pi (1), (22)

where the initial condition is

pc(]-) =4, pm(l) =12, (23)
QC(]-) =0, Qm(]-) =12. (24)



See [10] for detail. This result completely agrees to
the result by the combinatorial method, (13).

Although (13) is exact, it is difficult to see the char-
acteristics of this formula. A rather rough analysis
below gives a simple conclusion, that is, the crossover
operation reduces the CPL to its 7/8 at most. See
(18) again. In four of the sixteen matrices, the added
column vector is classified to Type 4. This means that
the crossover operation cannot contribute to decrease
the CPL in the twelve of the matrices. Moreover, a
Type-4 locus belongs to either Types 4-1 or 4-2. If
the SPL of one of them is the same as II;, the other is
necessarily larger. In total, only two of the sixteen ma-
trices have shorter SPL. This means that the crossover
operation reduces the CPL to its 7/8 at most. In fact,
the ratio in (13) seems to approach 7/8.

This idea still holds in the case of K > 2, by con-
sidering choosing two individuals from a population
and the corresponding two individuals from the other
population in a pair.

5 Conclusions

We regarded a simple GA as a network and an-
alytically derived its exact CPL for K = 2 and an
upper bound for a general K. The result shows how
the crossover operation works to shorten the CPL of
a network consisting of only the edges from mutation.
In short, even when the crossover operation is applied,
the CPL is not so small, and the same order O(L) as
in the case when only the mutation operation is em-
ployed.

One of the reasons is averaging: Since the CPL is
the SPL averaged over any pair of populations, it is
almost ignored how the information is encoded into the
genes. To overcome this problem, we need to introduce
the selection pressures of the GA, which were neglected
here. Our future work will investigate such matters.
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