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Abstract

This study presents an estimation method for a source-
filter model, which takes a temporal continuity of pitch
and amplitude into account and is useful, for example,
for instrument identification.

We assume pitch and amplitude as hidden variables
that tend to change continuously in time while the
resonant property is fixed in order to reduce inher-
ent indeterminacy in the source-filter model. In the
observation process of this dynamical system, which
models the generation of sound spectra from the hid-
den variables of the dynamics, pitch and amplitude
are highly nonlinear and non-Gaussian, i.e., a nonlin-
ear dynamical system. Therefore, it is intractable to
analytically estimate the hidden variables as well as
the model parameters which define the resonant prop-
erty. For this parameter estimation, we employed a
GA (Genetic Algorithm)-like algorithm. After the pa-
rameter of each instrument was estimated from iso-
lated notes, we verified the possibility of this system
identification method by reconstructing the spectrum
and by whether synthesized log-spectrum are close to
the original log-spectrum.

Index Terms – State space methods, Nonlinear
acoustics, Nonlinear dynamics, Acoustic filters

1 Introduction

The estimation of elements in sound such as pitch, am-
plitude and timbre has many applications, including
audio encoding with a small number of parameters,
sound synthesis, extraction of instrument properties
and music transcription. In this study, we in particu-
lar focus on one of those applications, instrument iden-
tification.

As an example of existing studies of instrument
identification, Eronen used instrument features to cre-
ate an instrument classifier in a hierarchical structure
and evaluated it on solo tones from 30 instruments,

achieving an identification rate for individual instru-
ments of approximately 80 percent [1]. Brown pre-
sented a classifier with Gaussian mixture models, and
obrained 75-85 percent accuracy in monophonic music
instrument identification [2]. However, these studies
could still not identify the instruments perfectly, espe-
cially for time-varying monophonic music.

For estimation of sound source or filter, Fant’s
source-filter model was sometimes used, which is origi-
nally used for modeling production processes of sound
and speech [4]. In this model, it is assumed that the
combination of a sound-source generation pattern and
the filter that represents the resonant property of the
target instrument produces observable power spectra.
Simultaneous estimation of the time-varying sound-
source pattern and the resonant property, however,
suffers from the problem of indeterminacy; that is, ob-
servable spectra can be expressed in various ways. To
determine the source-filter model, therefore, some kind
of constraint is necessary.

Itakura and Saito attempted to solve this problem
by identifying the filter part first. They modeled the
short-term speech signal as a stationary Gaussian pro-
cess and estimated the filter using maximum likelihood
spectrum estimation [5]. The assumption of the sta-
tionary Gaussian process, however, ignores the effect
of time-varying pitch and amplitude. Because of this
assumption, the model does not include the continuity
of pitch and amplitude, and then, it is not enough to
express real sound-source characteristics or resonant
properties.

In this study, we aim at simultaneous estimation
of a sound-source and a filter with a less number of
parameters. We propose an estimation method for
the source-filter model that takes a temporal continu-
ity into account by constructing a dynamical system
model for the sound-source. In particular, dynamics
of pitch and amplitude are considered. Additionally,
we assume that the resonant property does not vary in
time from the fact that the body of instrument itself



should be consistent in time.

2 The sound generative model

Using the source-filter model, unknown sound source
generation Gt and resonant property (the filter part)
Ht are both estimated from observable power spectra
of sound st, whose generation process is described as

st = φ(xt) = Gt �Ht, (1)

where st is a d-dimensional vector representing
the spectrum amplitude of each digitized frequency,
and the operation � means the Hadamard product
(element-by-element product). The representation of
source-filter model has an inherent indeterminacy that
we cannot identify Gt or Ht without additional con-
straints. To solve this problem, therefore, we introduce
the continuity in sound source Gt as a nonlinear dy-
namical system and assume the resonant property Ht

does not vary in time, written as H in the followings.

2.1 Nonlinear dynamical system

The nonlinear dynamical system with Markov proper-
ties consists of the observation process and the state
transition process:

st = φ(xt) � n1, (2)

xt = ψ(xt−1) + n2, (3)

where the function ψ(·) describes acoustical dynamics.
In these equations, xt = {at, ft} is a two-dimensional
hidden vector representing internal acoustical dynam-
ics, where at and ft denote log-amplitude and pitch,
respectively. We express these equations as probabilis-
tic models, p(st|xt, θ) and p(xt|xt−1, θ).

2.2 Observation process

When the sound is assumed to be stationary Gaus-
sian as in Linear Predictive Coding (LPC), Gaussian
noise in the time domain is closely represented as mul-
tiplicative Chi-square distribution with γ = 3 in the
frequency domain [5], so we employ that for the noise
distribution. Since observable spectra can be written
as the multiplication of noise and estimated with Gt

and H : st = ŝt � n where ŝt = Gt �H , we obtain
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Here, we define the time-fixed function of the reso-
nant property as

H(ω̃) = 21−p{sin2 ω̃

2
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which follows the one of Line Spectrum Pair (LSP)
in LPC [6]. In equation (5), ω̃ represents normalized
frequencies ω̃ = ωFs

2π
, where Fs is the sampling fre-

quency, and bk (k = 1, · · · , p) is the parameter of H .
The sound-source is time-dependent and represented
as the sum of Gaussians whose peaks are located at
harmonic frequencies:
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Here, −ωi

τ
indicates exponential decay in frequency,

A is an adjusting parameter for power, and N(x|µ, σ)
denotes the Gaussian distribution of x with mean µ

and variance σ. K and σp are the number of Gaus-
sians in the resonant property and the variance of each
Gaussian, respectively.

2.3 State transition

In addition to the constraint of time-invariance in the
resonant property H , the hidden variables for sound
source xt = {at, ft} are assumed to change either con-
tinuously or discontinuously in time [7]. Whether con-
tinuous or discontinuous is modeled by means of a two-
component Gaussian mixture:

p(xt|xt−1, θ) = η̄N(xt;m1, σ
2
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where ρ is an attenuation constant ranging from 0 to
1, m1 and m2 are mean vectors of at and ft. Co-
variance matrices for continuous transition are σ2

1 =
{σ2

1a
, σ2

1f
}, and those for discontinuous transitions are

σ2
2 = {σ2

2a
, σ2

2f
}. The first term corresponds to the

continuous transition where amplitude decreases ex-
ponentially and pitch does not change much. The sec-
ond transition corresponds to the discontinuous one,
approximated as a Gaussian process with a large vari-
ance σ2. Under these assumptions, the proportion of
the state transition being either continuous or discon-
tinuous is represented by η̄ that takes a value from 0
to 1.
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2.4 Joint distribution

For time-series of the observable variable st and the
hidden variable xt during t = 1, · · · , T , which are
wholely expressed as S1:T = {s1, s2, · · · , sT } and
X1:T = {x1, x2, · · · , xT }, respectively, the joint dis-
tribution for X1:T and S1:T is given by

p(X1:T , S1:T )

= p(s1|x1, θ)p(x1|θ)
∏T

t=2p(st|xt, θ)p(xt|xt−1, θ), (8)

where θ is the parameter vector that defines the func-
tions of Gt and H . Likelihood p(S1:T ) can be calcu-
lated by integrating this joint distribution with respect
to X1:T .

3 Parameter estimation

When the model has hidden variables, the EM algo-
rithm has often been used for the parameter estima-
tion. It requires the posterior probability of hidden
variables to be calculated, but this calculation is often
intractable in many nonlinear dynamical systems, like
our case. Therefore, instead of the EM algorithm, we
used an equivalent but practically different methodol-
ogy, a coordinate descent of free energy.

3.1 The EM algorithm and free energy

Free energy is defined for any trial distribution of the
hidden variable, q(X1:T ), as

F (q(X1:T ), θ)

= − log p(S1:T |θ) + KL [q(X1 :T )||p(X1 :T |S1 :T , θ)] .
(9)

where KL[q||p] =
∫

q(x) log q(x)
p(x)dx is the Kullbuck-

Leibler divergence. Apparently, minimizing the free
energy with respect to the trial distribution q(X1:T )
yields the negative log-likelihood − log p(S1:T |θ), and
in that case, q(X1:T ) is equal to p(X1:T |S1:T , θ) be-
cause of the positivity of the Kullbuck-Leibler diver-
gence. Therefore, the maximum likelihood (ML) esti-
mation is achieved by the simultaneous minimization
with respect to q(X1:T ) and θ:

θ̂ = arg maxθ log p(S1:T |θ)

= arg minθ

(

minq(X1:T ) (F (q(X1:T ), θ))
)

. (10)

In this optimization, we can employ alternate mini-
mization of the free energy with respect to q(X1:T ) and
θ, and it is known that the minimization of the free
energy becomes identical to the ML estimation by the

EM algorithm when we employ strict alternate mini-
mization of the free energy. Instead of the intractable
calculation of posterior distribution, however, we re-
lax the strict alternate minimization as to restrict the
trial distribution q(X1:T ) being a single Gaussian dis-
tribution, and then use a GA-like algorithm for the
parameter estimation.

3.2 GA-like algorithm approximation

For the estimation of optimal parameters, we used GA-
like algorithm known as a simplex method [8]. This
method looks for an optimal point by moving to a
new vertex whose function value is equal to or better
than that of the previous vertex. When there is no
such vertex, the current vertex is the locally optimal
solution.

4 Experimental evaluation

4.1 Sound database

To verify the performance of the proposed method as
an instrument identification application, we used iso-
lated notes from five kinds of instruments, taken from
the University of Iowa Electronic Music Studios sam-
ples [9]. The dataset consists of samples of flute, horn,
trumpet, viola and cello. For each instrument, we pre-
pared fifteen training data which consists of three data
from five different tones, and six test data which con-
tain the different tones with training data.

4.2 A sound-source and a filter estimation

The performance of the proposed system was first ex-
amined by seeing if a sound-source and a filter can be
well estimated. Fig. 1 shows the original log-spectrum
and the log-spectrum synthesized by the identified sys-
tem for cello. In the log-spectrum after learning pa-
rameters, the characteristic of pitch expressed as peaks
with constant intervals and the gradually decaying am-
plitude were well reconstructed.
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Figure 1: original log-spectrum and synthesized log-
spectrum
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4.3 Tracking of pitch and amplitude

We next evaluated whether the model can track the
pitch and amplitude of the original cello sound. The
result of pitch and amplitude tracking is shown in Fig.
2. In the left panel(frequency), since we used three
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Figure 2: Pitch and amplitude tracking

data for each tone, frequency in each group of three
are almost the same. That means the pitch tracking
was successful.

4.4 Feature extraction

In addition, the classification performance was plot-
ted with Local Fisher Discriminant Analysis(LFDA)
[10]. From the results in Fig. 3 that each instrument
tends to group, the system has the possibility to be
used in instrument identification.
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Figure 3: Instrument classification of isolated notes by
learned characteristics of H

5 Conclusion and future work

We presented a system identification approach to the
estimation of sound-source generation and resonant
properties. To consider the time-varying phenomena,
a nonlinear dynamical system was employed, while the
filter representing the resonant property was fixed in
time but estimated. A GA-like algorithm was used for
identification of this complex model based on avail-
able data. This model well reconstructed the original
sounds from the estimated sound source generation Gt

and the resonant property filter Ht.

For the practical use of this model for instrument
identification, we should evaluate this model with
monophonic and polyphonic music to know the abil-
ity to identify instruments being played. Although the
GA-like algorithm used for parameter estimation does
not require explicit gradients of the objective func-
tion, it does not guarantee global minimization. In our
future work, we also consider more strict free-energy
minimization for the parameter estimation.
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