Implementation of a GA Driven Programming Training Support System

Eiji Nunohiro, Kenneth J.Mackin, Masanori Ohshiro, Kotaro Matsushita, Kazuko Yamasaki
Department of Information Systems, Tokyo University of Information Sciences
1200-2 Yatoh-cho, Wakaba-ku, Chiba 265-8501, Japan
{nunohiro, mackin, ohshiro, matsushita, yamasaki}@rsch.tuis.ac.jp

Abstract

Based on the analogy that the process for build-
ing a program is similar to configuring a puzzle, we
propose a programming training method in which the
user reconfigures program fragments or program puz-
zle pieces, and improves program structure and pro-
gram flow comprehension skills. The proposed train-
ing system applies genetic algorithm (GA) to realize
the problem creation feature which creates a program
puzzle which best matches the user’s level of compre-
hension. The GA process evaluates both the level of
comprehension of the user and the estimated difficulty
of the puzzle, to determine the target problem diffi-
culty, i.e. the difficulty of the puzzle. With this GA
feature, we developed a programming training support
system which automatically creates appropriate pro-
gramming training problems matching the user’s com-
prehension level. In this paper, we first describe the
features and functions of the developed puzzle style
programming training support system. Next, we de-
scribe the results of implementing the developed sys-
tem to a C language programming course at Tokyo
University of Information Sciences. Finally, we apply
statistical tests to the results of changes in the stu-
dents programming skills, to show the validity of the
proposed system.

key words: genetic algorithm, e-leaning, program-
ming education, T test.

1 introduction

Computer education, such as Information literacy
and Programming training, has received much inter-
est recently in a wide range of academic programs,
including high schools and liberal arts undergraduate
programs. In the case of early programming training,
there are many topics that need to be studied together,
i.e. programming language syntax, programming de-
sign methods for object oriented design, and problem

solving algorithms.

In this research we aim at creating a training sup-
port system which targets an introductory or beginner
level programming user, and allows the user to develop
and improve programming skills through a game-like
learning process.

There has been previous research on automatic gen-
eration of programming exercises [1]. In this system
proposed by Suganuma et. al., in order to modify
the difficulty of the created exercise, various parame-
ters must be modified by the administrator. On the
other hand, our proposed system determines the dif-
ficulty of the exercise by evaluating the current level
of the user from the user’s training history, and auto-
matically creates appropriate programming exercises
matching the user’s level of understanding. The pro-
gramming training support system developed in this
research is designed upon the similarity between the
building process of a software program and a jig-saw
puzzle. The proposed system trains the programming
skill of the user by providing exercises in which the
user must rearrange source code fragments, similar to
a puzzle building task. By providing an interface to
solve programming exercises much like puzzle solving,
it allows users who are weak in programming to con-
tinue training through a game-like experience. In our
proposed system, the difficulty of the problem is ad-
justing by modifying the granularity of the source code
fragments, and the location of the breakpoints of the
fragments or puzzle pieces. For this system, we devel-
oped an algorithm applying genetic algorithm (GA)
to automatically generate exercises of appropriate dif-
ficulty that match the user’s level of proficiency|2].

We used the proposed training system in a begin-
ner level class for a C language programming course
in Tokyo University of Information Sciences. We an-
alyzed the changes in the students’ programming skill
in order to evaluate the validity and effectiveness of
the proposed system.

2 Outline of Programming Training
Support System

In order to improve programming skills, it is impor-
tant to practice coding programs to fulfill a given prob-
lem specifications. But it is also important to learn to
analyze a given program code to (a) understand the
algorithm flow, (b) confirm that the source code cor-
rectly fulfills the requirements, and (c) suggest pos-
sible improvements in performance or maintenance.
The proposed programming training support system
provides a training method to improve (1) program
flow analyzing skills, and (2) program structures com-
prehension skills. The proposed system trains these
aspects by having the user reconstruct programs from
program fragment pieces, much like building a puzzle
by finding the right puzzle pieces. The proposed sys-
tem evaluates the student’s current level of progress
from past training history, and automatically gener-
ates programming exercises which match the student’s
level of progress.

The programming exercise is automatically gener-
ated using the following 2 features.

(a) The progress management feature calculates the
student’s current level of progress from the user’s
history of training with the system.

(b) The puzzle creation feature generates the pro-
gram puzzle exercise from a completed program
source code. The puzzle creation feature can cre-
ate different patterns of puzzle exercises from the
same source code, so that the user can repeat-
edly try solving different exercises with the same
correct answer. The different patterns of puzzle
exercises generated are selected to be of the cor-
rect level of difficulty for the user’s current level of
progress. The level of difficulty of the generated
puzzle is determined by the number fragments and
location of break points. Genetic algorithm is ap-
plied in the algorithm to determine the number of
fragments, and the location of the break points to
divide the program into fragments.

Processing flow of programming training support
system is described in the following.

(1) System shows a problem to user according to the
learning contents such as a syllabus of program
practice or algorithm that user wishes.

(2) User selects a problem to answer from the prob-
lem that system showed

(3) System breaks up a program into puzzle pieces de-
pending on user level by using genetic algorithm

to determine the location and number of separa-
tion for the program.

(4) User reconstructs the program by selecting the
correct program puzzle pieces in the correct order.

(5) System estimates user’s result, and accumulates
as the user history.

The basic component of this system to achieve the
above mentioned processing is shown in Fig.1.

@ exercise display section indicates the problem
which is proposed by system using the learning
item and the user’s proficiency.

(@ puzzle generation section breaks up a program
into puzzle pieces depending on user progress level
by using genetic algorithm.

(@ exercise selection section selects a problem
from the learning item that user whishes or user
proficiency.

@ program management section manages the
program used as a problem.

(® progress display section indicates user
progress status from user proficiency.

© progress management section manages user
progress status.

(0 progress evaluation section evaluates user
progress from the user proficiency.

result display section indicates a result of user.

©® answer evaluation section estimates user’s an-
swer.

3 Programming problem creation

In this research, we created programming exercises
targeted towards beginner learners. The exercise re-
quired the student to arrange program fragments or
pieces in the correct order to complete the program
described. In general, if the exercise given is much
too difficult or too easy for the student, the exercise
will not assist the learning process of the student, and
may adversely affect the motivation to study the sub-
ject. Therefore, it is necessary to create program puz-
zle exercises of appropriate difficulty according to the
level of comprehension of the student. To realize this,
we considered the following method to create program
puzzle exercises.

O stepld Analyze the program source code by deter-
mining for each program statement, a) the control

R . @exercisg > @pl,.lZZle N @e.xercise.
P display section generation (GA) selection section —_—
| Student | 3 | recturer |
@program
management
: L9
P _ ®progress ®progress (Dprogress
- 1 display section > management evaluation
t
« confirm progress o Oresult display > ®answer + create sample
- select exercise e section evaluation programs
. answer - evaluate progess
+ check answer

Figure 1: Configuration of programming training support system

structure depth (control information) and b) vari-
able reference (reference information).

O step20 Calculate the difficulty level for each state-
ment using the above control and reference infor-
mation.

O step30 Apply genetic algorithm (GA) search to find
the optimal combination of partition-points which
best match the progress level of the user.

In the following sections, we describe the genetic
algorithm search applied.

3.1 Puzzle fragment granularity

Possible granularity of program fragments or divi-
sions are at identifier, expression, statements, or block
levels. For this research we create program fragments
between lines of code. Program fragment granular-
ity at the expression level will be implemented in the
future.

3.2 Source code analysis

Each line of code is analyzed for information to be
used in determining the difficulty of the partition. For
each line of code, the control depth, and variable ref-
erence is calculated to measure the complexity of the
source code.

O step all control information analysis
The ”control depth” for each statement is calcu-
lated. The control depth is the depth of the nest
of control statements, such as if, for, and while
statements.

Program Depth Reference
1:public class EvenOr0Odd { 0 0
2: public static void main(String[] args) { 1 1(def:1,use:0)
3 int Evev = 0; 1 1(def:1, use:0)
4: int 0dd = 0; 1 1(def:1, use:0)
5: for (int i=0 ; i<=100 ; i++){ 1 4(def:2,use:2)
6: if(i %2=0){ 2 1(def:0, use:1)
7 Even = Evev+1; 3 2(def:0, use:1)
8: Jelse{ 2 0
9: 0dd = 0dd+1; 3 2(def:1,use:1)
10: } 2 0
11: } 1 0
12: System. out. printin(” Number of Even : “+Even); 1 1(def:0, use:1)
13: System. out. printIn(” Number of 0dd”+0dd) : 1 1(def:0, use:1)
14: '} 0 0
15:} 0 0

Figure 2: Example of program

O step b0 reference information analysis
The ”variable reference” count for each statement
is calculated. The following criteria are used to
determine the variable reference for statement S:
- a variable is defined in statement S
- a variable is used in statement S
The variable reference count for a statement is the
total number of times a variable is defined or used
in the statement.

An example of source code analysis is shown in Fig.
2.

3.3 Relation between Program partition
points and difficulty of puzzle

The program puzzle pieces are created by selecting
partition points between two lines of code. The dif-
ficulty of the puzzle is dependent on the number of
pieces and the location of the partition points. If a

partition occurs at a location with high control depth
and high reference count, the puzzle can be assumed
to have a high difficulty. From this assumption, we
define the following function to evaluate the difficulty
of the partition. Partition point difficulty k is the eval-
uated difficulty when a partition occurs after program
code statement k. Partition point difficulty Ppdy is
defined as:

Ppdy, = control_depth x reference_count (1)

The difficulty of the puzzle is also affected by the
difficulty of the program algorithm used in the given
program source code, but this degree difficulty is de-
pendent on the prior knowledge of the individual user.
For this research we let the user decide on the degree
of difficulty for an algorithm.

3.4 Program partition by GA

The partition pattern (number of partitions and
location of partitions) is selected using the user’s
progress level and puzzle difficulty. This puzzle diffi-
culty is calculated using algorithm and language speci-
fication that is used in problem and partition difficulty
which is total value of partition point difficulty for each
partition point. We apply genetic algorithm (GA) to
select the partition pattern.

3.5 Chromosome expression

The partition pattern expressed as a binary string
is used as the chromosome in the genetic algorithm.
The length of the chromosome is 1 less than the lines of
code (statements) in the program. In the chromosome,
the value 1 indicates a partition at that location (line),
and 0 indicates no partition at that location. Fig. 3
illustrates the relationship between chromosome and
partition points. In Fig. 3 an example of a 15 line
program is shown, and the partition points are the
locations where the chromosome value is 1, i.e. after
lines 2,5,6,8,10.

3.6 Fitness evaluation

Fitness is evaluated using the user’s level of
progress, target problem difficulty, and difficulty of the
created program puzzle. Below we describe the fitness
evaluation method.

O puzzle difficulty
Puzzle difficulty is decided by 3 factors.

Chr. Line Num. Program
0 1: public class EvenOrOdd {
1 > 2 public static void main(String[] args) {
0 3: int Evev = 0;
0 4 int 0dd = 0;
1 > 5 for (int i=0 5 i<=100 ; i+#)
1 > 6 if(i%2=01{
0 7 Even = Evev+1;
1 » 8 Jelse{
0 9: 0dd = 0dd+1;
1 » 10: }
0 11: }
0 12: System. out. printIn(” Number of Even : “+Even) .
0 13: System. out. printIn("Number of 0dd”+0dd) ;
0 14: }
15: }

Figure 3: Example of program

@ language specification which is being used by a
program.

® algorithm which is used in a program.
® partition difficulty for a program.

The above @) and @) are difficulty about a compo-
nent of a program, and this these are divided into 10
stages as following.

* Level of language specification : g(1 < g < 10)
* Level of algorithm : a(1 < a < 10)

The partition difficulty is the sum of the partition
point difficulty value for the given program puzzle
chromosome, calculated with the following equation.

n

partition dif ficulty(pd) = Z(dek * Chry) (2)
k=1

where: n is number of program, Ppdy is the puzzle
difficulty at position k, Chry is the value of the chro-
mosome at position k.

Puzzle difficulty is calculated as follows using the
above g, a and pd.

puzzle dif ficulty(d) = g * a x pd (3)

0 User’s level of progress[]
The user’s level of progress is defined as the puzzle
difficulty of the last cleared problem.

O fitness function
The value of the degree of adaptation is to estimate
whether degree of difficulty of a problem is suitable
for the intelligibility of the learner, and it’s calculated
using the degree of fitness function.

The fitness function is defined as the following;:

fitness = |p — d| (4)

where : p is user’s level of progress, d is the puzzle
difficulty.

The chromosome with the fitness value closest to 0
is selected as the optimal program puzzle combination
for the user.

4 Training Implementation and Sys-
tem Evaluation

4.1 Course and evaluation

method

procedure

The proposed system was implemented in a begin-
ner level class for a C language programming course
for 1st year students in the environmental informa-
tion department curriculum at Tokyo University of
Information Sciences. In the programming course, all
students take a preliminary questionnaire in order to
divide the course in 4 classes depending on past pro-
gramming experience and knowledge. The four classes
are higher level, standard level, and 2 beginner level
classes. The beginner level students are divided into 2
classes which are beginner class A and beginner class
B from the questionnaire taken at the beginning of the
course. Fig. 4 shows the course and evaluation flow
of the beginner classes. The number in the figure rep-
resents the number of 90 min lectures. The question-
naire includes short quizzes which evaluate aptitude in
logical thinking, and students with higher scores were
placed in the beginner class A, and students with lower
scores were placed in the beginner class B. As a result,
31 students were placed in beginner A, and 24 students
were placed in beginner class B. The proposed train-
ing system was applied only to the beginner class B
after the first mid-term exam, and changes in the exam
scores between the mid-term and end-of-term exams
were compared and evaluated.

4.2 Course Content

Table 1 shows the lecture content for the beginner
class. Basic programming language topics were ex-
plained through lecture, and students create simple
programs applying the selected topic. The contents
of the lecture were identical for both beginner class A
and beginner class B, and the educational experience
of the lecturers for both classes were roughly the same.

4.3 Evaluation Results

Table 2 shows the results of the mid-term exam, the
end-of-term exam, and the statistical T test. From

| Class division by questionnaire

lecture & lab ®

mid term exam

lecture & lab ®

lecture & lab ©

(apply system)

end of term exam

with system (B class)

lecture & lab @)

end of term exam

witout system (A class)

Figure 4: Course and Evaluation Flow

Table 1: Lecture content

lecture topic
- constants and variables
01I/0 statements (printf, scanf)
0 if statement (include nesting)
O for statement (include nesting)
O array (1 dimensional array)

the results of the mid-term exam, there was a large
difference between the average scores of the 2 begin-
ner classes, and at 5% significance level, a statistical
significance was noted between beginner class A and
beginner class B. From the results of the end-of-term
exam, the difference in average scores between the 2
classes is much smaller, and a statistical significance
was not found between beginner class A and beginner
class B.

In order to collect the subjective views of the stu-
dents towards the proposed system, an anonymous
questionnaire (5 being the highest rating) was taken
after the end-of-term exam. Table 3 shows the results

Table 2: Exam and T Test results

class mid end
without system average 73.7 66.3
beginner A standard deviation 20.3 19.6
with system average 61.9 63.3
beginner B standard deviation 23.0 20.3

t test of beginner A t value 2.02 0.56
& beginner B significance *p<0.05 | none

Table 3: Questionnaire results

question results[%]
5 4 3 2 1
1. The system was
effective in improving | 18.2 | 59.1 | 22.7 | 0.0 | 0.0
programming skill.
2. The system will be
useful in future 304 | 52.2 | 174 | 0.0 | 0.0

studies.

of the anonymous questionnaire.

The questionnaire also asked for free opinions re-
garding the system in general. For positive views,
comments such as "It was fun to study using the sys-
tem.” and "It was easy to understand programming
using the system” were received. On the other hand
comments such as ”The operability was poor” gave
feedback on points to be considered in the future.

4.4 Discussion of Results

From the exam results in Table 2, it can be seen
that the beginner class B which had much lower av-
erage scores at mid-term compared to beginner class
A, had improved to similar scores by the end of term.
From Table 3 showing the results of the questionnaire,
77.3% of the students marked 4 or higher to the ques-
tion ”The system was effective in improving program-
ming skill”. Also, 82.6% of the students marked 4 or
higher to the question ”The system will be useful in
future studies”. From the free opinion question, many
positive comments such as "It was fun to study using
the system” and "It was easy to understand program-
ming using the system” were received. From these re-
sults, we conclude that the proposed training system
had been effective in supporting programming educa-
tion.

On the other hand, points to be considered in the
future were raised through the questionnaire. There
were comments on the poor operability of the system,
and we feel that the man-machine interface and screen
layout needs to be reconsidered for improvement.

5 Conclusion

For software programming classes and other lab
based courses, there is an inherent problem of how

to address the needs of the beginner and slower learn-
ing students. Especially when the size of the class
becomes larger, it becomes more difficult to super-
vise every student individually. The effectiveness of
the training course can be improved by providing a
self learning environment in which these students can
study at their own paces.

In this research, we proposed a programming train-
ing support system which targeted beginner and slower
learners. The system aims at improving programming
skill through a game-like interface. We applied the
proposed system in a C language course, and evaluated
the educational effectiveness of the system. From the
research results, we were able to show that this sys-
tem was effective in supporting the learning of begin-
ner and slower students. We feel that similar positive
results can be expected in programming courses for
students without strong mathematical background.

For future works, we plan to redesign the man-
machine interface and screen layout to improve the
operability of the system. We also plan to add fea-
tures to enable algorithm training and object-oriented
programming training, in order to expand the appli-
cation area of the proposed training system.

References

[1] AKIRA SUGANUMA, TSUNENORI MINE,
TAKAYOSHI SHOUDA, Automatic Exercise Gen-
erating System That Dynamically Evaluates both
Students’ and Questions’ Levels, IPSJ(Information
Processing Society of Japan) Journal, pp.1810-
1817, Vol.46 No.7 July 2005

[2] Eiji Nunohirol Kenneth J. Mackin, Masanori
Ohshiro, Kazuko Yamasaki, Applying Genetic Al-
gorithm to a Programming Training Support Sys-
tem, The eleventh International Symposium on
Artificial Life and Robotics(AROB 11th ' 06)
Program p750 Proceeding Index GS10-1, January
2006

