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Abstract 
 

     Recently, many production lines that have 
complicated structures such as parallel, reworks, 
feed-forward, etc. are widely used in high volume 
industries. Among them, the serial-parallel production 
line (S-PPL) is one of the more common production 
styles in many modern industries. One of the methods 
used for studying the S-PPL design is through genetic 
algorithms (GA). One of the important jobs to use GA is 
how to express a chromosome. In this paper, we attempt 
to find the nearest optimal design of an S-PPL that will 
maximize production efficiency by optimizing the 
following 3 decision variables: buffer size between each 
pair of work stations, machine numbers in each of the 
work stations; and, machine types. In order to do this we 
present a new GA-simulation based method to find the 
nearest optimal design for our proposed S-PPL. For 
efficient use of GA, our GA methodology is based on a 
technique that is called gene family arrangement method 
(GFAM) which arranges the genes inside individuals. An 
application example shows that after a number of 
operations based on the proposed simulator, the nearest 
optimal design of S-PPL can be found. 
 
Keywords:  Serial-parallel production line, buffer size, 
Genetic algorithms, Throughput evaluation. 
 
1. Introduction 
 
     Production lines that have complicated structures 
such as parallel, reworks, feed-forward, etc. are widely 
used in high volume industries [1, 2]. Among them, the 
serial-parallel production line (S-PPL) [1, 3] is one of the 
more common production styles in many modern 
industries.  S-PPL is mainly used to increase the 
capacity of one work station that has a lower speed than 
other work stations by reducing the variation of material 
flow speed through the overall production line. 
Furthermore, S-PPL also reduces the effect of machine 
failure during processing time. Despite many 
methodologies developed to study S-PPL, several 
researchers have described the optimization of 
production lines using various optimization methods, 
such as functional approximation and evaluation [4], 
knowledge-based methods [5], simulated annealing [6], 
heuristics algorithm [7], dynamic programming method 
[8], and other search methods. One of the methods used 
for studying the buffer size in production lines is genetic 
algorithms (GA) [9, 10].  

     Almost all researchers assumed that the machine 
numbers are fixed and only concentrate on finding the 
buffer size. In this paper, we attempt to find the nearest 
optimal design of an S-PPL that will maximize 
production efficiency by optimizing the following 3 
decision variables: buffer size between each pair of work 
stations, machine numbers in each of the work stations; 
and, machine types. In order to do this we present a new 
GA-simulation based method to find the nearest optimal 
design for our proposed S-PPL. One of the important 
taskes in using GA is how to express a chromosome. For 
the efficient use of GA, our GA methodology is based on 
a technique that is called gene family arrangement 
method (GFAM) which arranges the genes inside 
individuals. 
 
     In evaluating the S-PPL, each work station that 
consists of multiple parallel machines is combined into 
one equivalent single machine that turns the S-PPL into a 
serial production line. Then, the serial production line 
includes equivalent machines which can be 
approximated by using a well known decomposition 
approach. 
 
2. Problem Description 
 
     Consider a series-parallel production line with K 
work stations (S1, S２, … , SK) and K-1 buffers. Each 
work station i (i = 1, 2, … , K) in the S-PPL can contain 
several multiple parallel machines as shown in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
     Before formulating the problem, notations are 
introduced as follows. 
P  the total production rate 
B  {Bi} buffer size between stations i and i+1 
S  maximum capacity of buffer 
C  {Ci} number of parallel machines in work 
station i 
T  {Tij} type of machine j that is located in 

Figure1: S-PPL Model  
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The problem can be formulated mathematically as 
follows: 
Maximize  P(B C,T)                          (1) 
Subjected to  1 ≤ B ≤ S                       (2)  
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3. Throughput Evaluation of the S-PPL 
 
     In order to evaluate the S-PPL, the multiple 
parallel machines in each work station are combined into 
one equivalent single machine. In this way the S-PPL 
can be converted into a serial production line where each 
machine in the serial line is equivalent to one set of 
multiple parallel machines. Then, the serial production 
line includes equivalent machines which can be 
approximated by using a well known decomposition 
approach [11]. 
 
3.1. Replacing Each Work Station by an 
equivalent machine 
 
     Let us consider a work station i in the S-PPL 
model with machines Mij, j= 1, …, j1 as shown in Figure 
1. Assume that the uptime and the downtime of the 
aggregated machines Mij are randomly variable and 
distributed exponentially with parameters Pi and Ri. Then, 
the parameters Pe and Re for the equivalent machine can 
be calculated as follows. 
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3.2. Serial Line Aggregation 
 
     Previously, no closed form expression for 
performance of a serial line with more than two 
(non-identical) machines has been available. Therefore, 
many approximation approaches have been used to 
evaluate the production line based on aggregation and 
decomposition. In this paper, we introduce the 
aggregation procedure proposed by Li [11], which 
modifies the machine downtime parameter to 
accommodate starving and blocking information. This 

aggregation procedure is a good approximation and 
results in good accuracy. Consider a serial line with 
machines ( e

K
e
2

e
1 M,,M,M K ) and buffer size B1 to 

BK-1. The first two machines aggregate into a single 
machine f

2M  with downtime parameter f
2r  and the 

uptime parameter f
2p  is defined as follows. 

)]N,r ,p ,r ,Q(p-[1rr 122112
f

2 = ,                   (6) 
)N,r ,p ,r ,Q(prpp 1221122

f
2 +=                     (7)           

Where Q( 12211 N,r ,p ,r ,p ) is the probability that 

machine eM 2  is starved and is defined by [12] as 
follows: 
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Next, f
2M  is aggregated with e

3M to result in f
3M , and 

so on until all K machines are aggregated in a single one, 
f

nM . This constitutes forward aggregation. Then, in 

backward aggregation, the last machine, e
KM , is 

aggregated with e
1KM − to result in b

1-nM and so on until 
all machines are aggregated in a single machine, b

1M . 
The procedure is repeated until convergence is satisfied. 
By following the aggregation procedure, the production 
rate can be approximated as,  
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4. Gene Family Arrangement Method 
 
     One of the important tasks in using GA is how to 
express a chromosome. As we described above, this 
research solves three different decision variables. To 
represent these variables, we propose GFAM as a new 
arrangement method which arranges the genes in each 
individual. Furthermore, GFAM adopts two groups of 
genes in each individual. The first group represents the 
buffer size and is located in the even positions of the 
individual (G2, G4, … , G2k-2, G2k), where k is the number 
of work stations. The second group represents the 
number of machines in each work station and it is 
located in the odd positions of the individual (G1, G3, … , 
G2k-3, G2k-1). Each of the items in the odd group includes 
a family of genes which represent the machine types in 
each work station; each family of genes is coded as 
follows.  
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Where j is the number of parallel machines in work 
station i. The number of items in the odd and even 
groups is not limited, which means that any production 
line with any number of work stations that include any 
number of machines and any buffer size between each 
pair of work stations can be dealt with. 
 
5. Genetic Algorithms for the Optimal 
Design of S-PPL 
 
     GA is a global optimization technique used for 
various optimization problems [9, 10]. In this paper, we 
present the determination of a near optimal design for an 
S-PPL. Since the developed GFAM is different from 
conventional individual expressions, the operational 
procedure for our GA is also different. The 
characteristics of the GA are described in sections 5-1 
and 5-2. 
 
5.1. Crossover 
 
     In this research, the encoding method to express 
each individual using GFAM is different from that 
obtained using conventional encoding methods. The 
crossover operations for our GA system operate by using 
two processes. The first crossover is similar to the 
conventional crossover method, i.e., the genes after the 
crossover point are swapped between two individuals. 
On the other hand, the second crossover method swaps 
the genes between two families for each of the 
individuals that results from the first process. 
 
     The crossover operations are generated by using 
the following steps: 
Step 1: Randomly select two individuals from the 
current population.  
Step 2: Randomly select a crossover point and swap the 
genes after that crossover point. 
Step 3: Randomly select two items (families), I1 and I2 
from the odd group in the first individual generated from 
step 2.  
Step 4: Randomly select a family crossover point.  
Step 5: Randomly select the number of genes after the 
family crossover point to be included in the crossover, 
NF. NF < I1 and NF < I2. 
Step 6: Replace the genes after the family crossover 
point one by one. If one of the two families reaches its 
last gene, continue the replacement from the first gene in 
the family.  
Step 7: Repeat steps 3-7 for the second individual 
generated from step 2.  
Figure 2 shows the crossover process graphically. 
 
5.2.  Mutation 
 
     The mutation of our GA system is different from 
the traditional mutation operator because the gene 
expression adopts GFAM. The mutation is carried out by 
using the following steps: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Step 1: Select one individual randomly from the current 
population. 
Step 2: Randomly select one of the genes of a single 
gene type (first group). 
Step 3: Change the value of the selected gene to a new 
value, which can also be selected randomly between 
(1-S). 
Step 4: Randomly select one gene family (Second 
group).  
Step 5: Change the value of the selected gene to a new 
value, which can also be selected randomly between (1- 
the number of the selected family members). 
Step 6: Randomly select one gene family, again.  
Step 7: Randomly select one member of the selected 
gene family. 

Step 8: Change the type of the selected family member 
to a new value, which can also be selected randomly. 
 
5.3. Implementation of the GA 
 
Before describing our implementation of the genetic 
algorithm, the following notations are defined. 
 
 Notations: 
PS  Population size. 
Pc  Crossover rate. 
Pm  Mutation rate. 
Pi  Selection probability of the individual i. 
Fi  Fitness of individual i. 
N  Number of individuals in the population. 
Di  Individual i in the population. 
 
The implementation of GA is presented below. 
Step1 [Initialization] Randomly generate an initial 
population.  
Step2 [Evaluation] Evaluate the fitness for each 
individual in the population. 
Step3 [Selection] Calculate the roulette selection 
probability Pi, N ..., ,2 ,1i =∀ by using equation (11). 

Figure 2: Crossover process  
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Step4 [Create new population] For ( ) ,NPi c ×≤  create 
D1…i using crossover operations. Set the other individuals 
using the roulette selection process. 
Step5 [Carried out mutation] Apply mutation operations 
on ( ) NPm × individuals.   
Step6 [Keep fittest using elitist selection strategy] 
Randomly select one individual from the generated 
population. Replace the selected individual with the best 
individual in the current generation if it has not been 
selected through the roulette selection process. 
Step7 [Loop]: Loop until fitness reaches its maximum 
value. 
 
6. Numerical Experiments 
 
6.1. Simulation model 
 
     The simulation model of our S-PPL was developed 
using C++. The uptimes and the downtimes of the 
machines were all assumed to be randomly variable and 
distributed exponentially. The model was run until the 
fitness (throughput) attained maximum value. In each 
generation the parallel machines, each work station is 
replaced by an equivalent machine. Then, the 
throughputs of the serial line of the equivalent machines 
are evaluated. GA operations improve the throughput 
until the fitness becomes constant. 
 
6.2. Results 
     We applied our algorithm to an example of an 
S-PPL with 10 work stations. The maximum allowable 
number of machines to be connected in parallel is 5. The 
algorithm was tested by performing many trials. Figure 3 
shows the (fitness) throughput versus the number of 
generations. 
 
 
 
 
 
 
 
 
 
 
 
 
7. Conclusion 
 
     This study describes a new GA-simulation based 
method to find the nearest optimal design for a S-PPL. 
Instead of using buffer size as a single decision variable, 
this paper proposes an optimal design for the S-PPL by 
using three decision variables: buffer size between each 
pair of work stations, machine numbers inside the 
workstations, and machine types. The GA methodology 

is based on a new technique of gene expression that is 
called gene family arrangement method (GFAM) which 
arranges the genes inside individuals. We used the new 
GA-simulation based method to determine some S-PPL 
designs. After a number of generations, the nearest 
optimal S-PPL could be determined. The results of this 
study can be used to improve S-PPL design, and 
production engineers can use these results when they 
design a new S-PPL. 
   
References 
 
[1] Dallery, Y. and Gershwin, S. B., “Manufacturing 
Flow Line Systems: A Review of Models and Analytical 
Results”, Queueing Systems theory and Applications, 
Special Issue on Queueing Models of Manufacturing 
Systems, Vol 12, No. (1-2), pp. 3-94, 1992. 

[2] Gershwin, S.B., “Manufacturing systems engineering 
“, Prentice-Hall, 1993 

[3] Burman, M.H., “New Results in Flow Line Analysis”, 
Ph. D. Thesis, MIT, Cambridge MA, 1995. 

[4] Enginarlar, E., Li, J., Meerkov, S. M. and Zhang, R. 
Q., “Buffer capacity for accommodating machine 
downtime in serial production lines”, International 
Journal of Production Research, Vol. 40 No. 3, pp. 
601-624, 2002. 

[5] Vouros, G. A., and Papadopoulos, H. T., “Buffer 
allocation in unreliable production lines using a 
knowledge based system”, Computers and Operations 
Research, Vol. 25, No. 12, pp. 1055-1067, 1998. 

[6] Spinellis, D., Papadopoulos, C.T., and MacGregor, J., 
“Large production line optimization using simulated 
annealing”, International Journal of Production 
Research, Vol. 38, No.3, pp. 509–541, 2000. 

[7] Papadopoulos, H.T. and Vidalis, M.I., “A heuristic 
algorithm for the buffer allocation in unreliable 
unbalanced production lines”, Computers & Industrial 
Engineering, Vol. 41, No. 3, pp. 261–277, 2001. 

[8] Jafari, M. A. and Shanthikumar, J. G., “Determination 
of optimal buffer storage capacities and optimal 
allocation in multistage automatic transfer lines”, IIE 
Transactions, Vol. 21, No.2, pp. 130-135, 1989. 

[9] Forrest, S., “Genetic Algorithms”, ACM Computing 
Surveys, Vol. 28, No. 1, pp. 77-83, 1996. 

[10] Goldberg, D. E., “Genetic Algorithms: In Search of 
Optimization & Machine Learning”, Addison-Wesley, 
1989. 

[11] Jingshan Li, “Overlapping Decomposition: A 
System-Theoretic Method for Modeling and Analysis of 
Complex Production Systems”, Technical Report, 
General Motors Research & Development Center, 2003. 

[12] Chiang S.Y., Kuo C.-T. and Meerkov S.M., 
“DT-Bottlenecks in Serial Production Line: Theory and 
Application”, IEEE Transactions on Robotics and 
Automation, Vol. 16, pp. 567-580, 2000. 

Figure 3: Best fitness curve 
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