
Genetic Algorithms for Buffer Size and Work Stations Capacity in
Serial-Parallel Production Lines

Abu Qudeiri Jaber1, Rizauddin Ramli2 and Yamamoto Hidehiko3
Intelligent Manufacturing Systems Laboratory, Gifu University

1-1 Yanagido, Gifu Shi, 501-1193, Japan
{1k3812203, 2k3812205}@edu.gifu-u.ac.jp, 3yam-h@gifu-u.ac.jp

Abstract

 Recently, many production lines that have
complicated structures such as parallel, reworks,
feed-forward, etc. are widely used in high volume
industries. Among them, the serial-parallel production
line (S-PPL) is one of the more common production
styles in many modern industries. One of the methods
used for studying the S-PPL design is through genetic
algorithms (GA). One of the important jobs to use GA is
how to express a chromosome. In this paper, we attempt
to find the nearest optimal design of an S-PPL that will
maximize production efficiency by optimizing the
following 3 decision variables: buffer size between each
pair of work stations, machine numbers in each of the
work stations; and, machine types. In order to do this we
present a new GA-simulation based method to find the
nearest optimal design for our proposed S-PPL. For
efficient use of GA, our GA methodology is based on a
technique that is called gene family arrangement method
(GFAM) which arranges the genes inside individuals. An
application example shows that after a number of
operations based on the proposed simulator, the nearest
optimal design of S-PPL can be found.

Keywords: Serial-parallel production line, buffer size,
Genetic algorithms, Throughput evaluation.

1. Introduction

 Production lines that have complicated structures
such as parallel, reworks, feed-forward, etc. are widely
used in high volume industries [1, 2]. Among them, the
serial-parallel production line (S-PPL) [1, 3] is one of the
more common production styles in many modern
industries. S-PPL is mainly used to increase the
capacity of one work station that has a lower speed than
other work stations by reducing the variation of material
flow speed through the overall production line.
Furthermore, S-PPL also reduces the effect of machine
failure during processing time. Despite many
methodologies developed to study S-PPL, several
researchers have described the optimization of
production lines using various optimization methods,
such as functional approximation and evaluation [4],
knowledge-based methods [5], simulated annealing [6],
heuristics algorithm [7], dynamic programming method
[8], and other search methods. One of the methods used
for studying the buffer size in production lines is genetic
algorithms (GA) [9, 10].

 Almost all researchers assumed that the machine
numbers are fixed and only concentrate on finding the
buffer size. In this paper, we attempt to find the nearest
optimal design of an S-PPL that will maximize
production efficiency by optimizing the following 3
decision variables: buffer size between each pair of work
stations, machine numbers in each of the work stations;
and, machine types. In order to do this we present a new
GA-simulation based method to find the nearest optimal
design for our proposed S-PPL. One of the important
taskes in using GA is how to express a chromosome. For
the efficient use of GA, our GA methodology is based on
a technique that is called gene family arrangement
method (GFAM) which arranges the genes inside
individuals.

 In evaluating the S-PPL, each work station that
consists of multiple parallel machines is combined into
one equivalent single machine that turns the S-PPL into a
serial production line. Then, the serial production line
includes equivalent machines which can be
approximated by using a well known decomposition
approach.

2. Problem Description

 Consider a series-parallel production line with K
work stations (S1, S２, … , SK) and K-1 buffers. Each
work station i (i = 1, 2, … , K) in the S-PPL can contain
several multiple parallel machines as shown in Figure 1.

 Before formulating the problem, notations are
introduced as follows.
P the total production rate
B {Bi} buffer size between stations i and i+1
S maximum capacity of buffer
C {Ci} number of parallel machines in work
station i
T {Tij} type of machine j that is located in

Figure1: S-PPL Model

M11

M12

M1(j1)

...

IN S1 B1
OutS2 ... Bk-1 Sk

station i
a
groupM the available types of machines,

{ }a
l

aaa
group MMMM ,,, 21 K= .

The problem can be formulated mathematically as
follows:
Maximize P(B C,T) (1)
Subjected to 1 ≤ B ≤ S (2)

{ }a
l

aa
ij MMMT ,,, 21 K∈ (3)

3. Throughput Evaluation of the S-PPL

 In order to evaluate the S-PPL, the multiple
parallel machines in each work station are combined into
one equivalent single machine. In this way the S-PPL
can be converted into a serial production line where each
machine in the serial line is equivalent to one set of
multiple parallel machines. Then, the serial production
line includes equivalent machines which can be
approximated by using a well known decomposition
approach [11].

3.1. Replacing Each Work Station by an
equivalent machine

 Let us consider a work station i in the S-PPL
model with machines Mij, j= 1, …, j1 as shown in Figure
1. Assume that the uptime and the downtime of the
aggregated machines Mij are randomly variable and
distributed exponentially with parameters Pi and Ri. Then,
the parameters Pe and Re for the equivalent machine can
be calculated as follows.

()

()∑ ∑

∑

= ≠=

=

+

+

= K

1i

K

ij,1i
1j1j1ii

K

2i
1i1i1111

e

RPRS

RPRP
SP , (4)

()

()∑ ∑

∑

= ≠=

=

+

+

= K

i

K

iji
jjii

K

i
ii

e

RPPS

RPRP
SR

1 ,1
111

2
111111

 (5)

Where ∑
=

=
K

i
iSS

1

3.2. Serial Line Aggregation

 Previously, no closed form expression for
performance of a serial line with more than two
(non-identical) machines has been available. Therefore,
many approximation approaches have been used to
evaluate the production line based on aggregation and
decomposition. In this paper, we introduce the
aggregation procedure proposed by Li [11], which
modifies the machine downtime parameter to
accommodate starving and blocking information. This

aggregation procedure is a good approximation and
results in good accuracy. Consider a serial line with
machines (e

K
e
2

e
1 M,,M,M K) and buffer size B1 to

BK-1. The first two machines aggregate into a single
machine f

2M with downtime parameter f
2r and the

uptime parameter f
2p is defined as follows.

)]N,r ,p ,r ,Q(p-[1rr 122112
f

2 = , (6)
)N,r ,p ,r ,Q(prpp 1221122

f
2 += (7)

Where Q(12211 N,r ,p ,r ,p) is the probability that

machine eM 2 is starved and is defined by [12] as
follows:

=

+++

+

=

r
p

r
p

 if

 ,
]N)rrpp(rp)(rr)(pp)[r(p

)(rr)(ppp

r
p

r
p

 if ,
re-1
)-1)(e-(1

N),r ,p ,r ,Q(p

2

2

1

1

11121111

111

2

2

1

1

2
N-

1

2211

≠βΦ
Φ

 (8)

1,2i ,
rp

re
ii

i
i =

+
= ,

)e-(1e
)e-(1e

12

21=Φ , 1++= iii pppp

1++= iii rrrr and
)r(r)p(p

)rp-rp)(rrp(p

2121

12212121

++
+++

=β .

Next, f
2M is aggregated with e

3M to result in f
3M , and

so on until all K machines are aggregated in a single one,
f

nM . This constitutes forward aggregation. Then, in

backward aggregation, the last machine, e
KM , is

aggregated with e
1KM − to result in b

1-nM and so on until
all machines are aggregated in a single machine, b

1M .
The procedure is repeated until convergence is satisfied.
By following the aggregation procedure, the production
rate can be approximated as,

b
1

b
1

b
1

f
N

f
N

f
N

1-n1nn11 rp
r

rp
r)N ,...,N,r ,p ,... ,r ,PR(p

+
=

+
= (9)

4. Gene Family Arrangement Method

 One of the important tasks in using GA is how to
express a chromosome. As we described above, this
research solves three different decision variables. To
represent these variables, we propose GFAM as a new
arrangement method which arranges the genes in each
individual. Furthermore, GFAM adopts two groups of
genes in each individual. The first group represents the
buffer size and is located in the even positions of the
individual (G2, G4, … , G2k-2, G2k), where k is the number
of work stations. The second group represents the
number of machines in each work station and it is
located in the odd positions of the individual (G1, G3, … ,
G2k-3, G2k-1). Each of the items in the odd group includes
a family of genes which represent the machine types in
each work station; each family of genes is coded as
follows.

1-2 3,-2 3 1,
1

kki
G

G
G

ij

i

i KM =∀

= (10)

Where j is the number of parallel machines in work
station i. The number of items in the odd and even
groups is not limited, which means that any production
line with any number of work stations that include any
number of machines and any buffer size between each
pair of work stations can be dealt with.

5. Genetic Algorithms for the Optimal
Design of S-PPL

 GA is a global optimization technique used for
various optimization problems [9, 10]. In this paper, we
present the determination of a near optimal design for an
S-PPL. Since the developed GFAM is different from
conventional individual expressions, the operational
procedure for our GA is also different. The
characteristics of the GA are described in sections 5-1
and 5-2.

5.1. Crossover

 In this research, the encoding method to express
each individual using GFAM is different from that
obtained using conventional encoding methods. The
crossover operations for our GA system operate by using
two processes. The first crossover is similar to the
conventional crossover method, i.e., the genes after the
crossover point are swapped between two individuals.
On the other hand, the second crossover method swaps
the genes between two families for each of the
individuals that results from the first process.

 The crossover operations are generated by using
the following steps:
Step 1: Randomly select two individuals from the
current population.
Step 2: Randomly select a crossover point and swap the
genes after that crossover point.
Step 3: Randomly select two items (families), I1 and I2
from the odd group in the first individual generated from
step 2.
Step 4: Randomly select a family crossover point.
Step 5: Randomly select the number of genes after the
family crossover point to be included in the crossover,
NF. NF < I1 and NF < I2.
Step 6: Replace the genes after the family crossover
point one by one. If one of the two families reaches its
last gene, continue the replacement from the first gene in
the family.
Step 7: Repeat steps 3-7 for the second individual
generated from step 2.
Figure 2 shows the crossover process graphically.

5.2. Mutation

 The mutation of our GA system is different from
the traditional mutation operator because the gene
expression adopts GFAM. The mutation is carried out by
using the following steps:

Step 1: Select one individual randomly from the current
population.
Step 2: Randomly select one of the genes of a single
gene type (first group).
Step 3: Change the value of the selected gene to a new
value, which can also be selected randomly between
(1-S).
Step 4: Randomly select one gene family (Second
group).
Step 5: Change the value of the selected gene to a new
value, which can also be selected randomly between (1-
the number of the selected family members).
Step 6: Randomly select one gene family, again.
Step 7: Randomly select one member of the selected
gene family.

Step 8: Change the type of the selected family member
to a new value, which can also be selected randomly.

5.3. Implementation of the GA

Before describing our implementation of the genetic
algorithm, the following notations are defined.

 Notations:
PS Population size.
Pc Crossover rate.
Pm Mutation rate.
Pi Selection probability of the individual i.
Fi Fitness of individual i.
N Number of individuals in the population.
Di Individual i in the population.

The implementation of GA is presented below.
Step1 [Initialization] Randomly generate an initial
population.
Step2 [Evaluation] Evaluate the fitness for each
individual in the population.
Step3 [Selection] Calculate the roulette selection
probability Pi, N ..., ,2 ,1i =∀ by using equation (11).

Figure 2: Crossover process

55

54

53

52

51

M
M
M
M
M

14

13

12

11

M
M
M
M

55

13

12

52

51

M
M
M
M
M

14

54

53

11

M
M
M
M

2

1
[]212512984 []48315783

[]212515783 []48312984

74

73

72

71

M
M
M
M

52

51

72

53

M
M
M
M

53

52

51

M
M
M

53

52

51

M
M
M

71

74

73

M
M
M

∑ ∑
= =

←
i

j

N

k
kji)FF(P

1 1

 (11)

Step4 [Create new population] For () ,NPi c ×≤ create
D1…i using crossover operations. Set the other individuals
using the roulette selection process.
Step5 [Carried out mutation] Apply mutation operations
on () NPm × individuals.
Step6 [Keep fittest using elitist selection strategy]
Randomly select one individual from the generated
population. Replace the selected individual with the best
individual in the current generation if it has not been
selected through the roulette selection process.
Step7 [Loop]: Loop until fitness reaches its maximum
value.

6. Numerical Experiments

6.1. Simulation model

 The simulation model of our S-PPL was developed
using C++. The uptimes and the downtimes of the
machines were all assumed to be randomly variable and
distributed exponentially. The model was run until the
fitness (throughput) attained maximum value. In each
generation the parallel machines, each work station is
replaced by an equivalent machine. Then, the
throughputs of the serial line of the equivalent machines
are evaluated. GA operations improve the throughput
until the fitness becomes constant.

6.2. Results
 We applied our algorithm to an example of an
S-PPL with 10 work stations. The maximum allowable
number of machines to be connected in parallel is 5. The
algorithm was tested by performing many trials. Figure 3
shows the (fitness) throughput versus the number of
generations.

7. Conclusion

 This study describes a new GA-simulation based
method to find the nearest optimal design for a S-PPL.
Instead of using buffer size as a single decision variable,
this paper proposes an optimal design for the S-PPL by
using three decision variables: buffer size between each
pair of work stations, machine numbers inside the
workstations, and machine types. The GA methodology

is based on a new technique of gene expression that is
called gene family arrangement method (GFAM) which
arranges the genes inside individuals. We used the new
GA-simulation based method to determine some S-PPL
designs. After a number of generations, the nearest
optimal S-PPL could be determined. The results of this
study can be used to improve S-PPL design, and
production engineers can use these results when they
design a new S-PPL.

References

[1] Dallery, Y. and Gershwin, S. B., “Manufacturing
Flow Line Systems: A Review of Models and Analytical
Results”, Queueing Systems theory and Applications,
Special Issue on Queueing Models of Manufacturing
Systems, Vol 12, No. (1-2), pp. 3-94, 1992.

[2] Gershwin, S.B., “Manufacturing systems engineering
“, Prentice-Hall, 1993

[3] Burman, M.H., “New Results in Flow Line Analysis”,
Ph. D. Thesis, MIT, Cambridge MA, 1995.

[4] Enginarlar, E., Li, J., Meerkov, S. M. and Zhang, R.
Q., “Buffer capacity for accommodating machine
downtime in serial production lines”, International
Journal of Production Research, Vol. 40 No. 3, pp.
601-624, 2002.

[5] Vouros, G. A., and Papadopoulos, H. T., “Buffer
allocation in unreliable production lines using a
knowledge based system”, Computers and Operations
Research, Vol. 25, No. 12, pp. 1055-1067, 1998.

[6] Spinellis, D., Papadopoulos, C.T., and MacGregor, J.,
“Large production line optimization using simulated
annealing”, International Journal of Production
Research, Vol. 38, No.3, pp. 509–541, 2000.

[7] Papadopoulos, H.T. and Vidalis, M.I., “A heuristic
algorithm for the buffer allocation in unreliable
unbalanced production lines”, Computers & Industrial
Engineering, Vol. 41, No. 3, pp. 261–277, 2001.

[8] Jafari, M. A. and Shanthikumar, J. G., “Determination
of optimal buffer storage capacities and optimal
allocation in multistage automatic transfer lines”, IIE
Transactions, Vol. 21, No.2, pp. 130-135, 1989.

[9] Forrest, S., “Genetic Algorithms”, ACM Computing
Surveys, Vol. 28, No. 1, pp. 77-83, 1996.

[10] Goldberg, D. E., “Genetic Algorithms: In Search of
Optimization & Machine Learning”, Addison-Wesley,
1989.

[11] Jingshan Li, “Overlapping Decomposition: A
System-Theoretic Method for Modeling and Analysis of
Complex Production Systems”, Technical Report,
General Motors Research & Development Center, 2003.

[12] Chiang S.Y., Kuo C.-T. and Meerkov S.M.,
“DT-Bottlenecks in Serial Production Line: Theory and
Application”, IEEE Transactions on Robotics and
Automation, Vol. 16, pp. 567-580, 2000.

Figure 3: Best fitness curve

80

81

82

83

84

85

86

87

0 1000 2000 3000 4000 5000

Genera tions

Fi
tn

es
s

(%
)

