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Abstract

This paper presents a framework for detecting objects
in images. The motive of this research can be found in
onsite requirements. We focus on the practical need on
distinguishing salt called purity from impurities, which
are sand, soil, and other substance in the heaped salt
on a conveyer belt. In this work, basing on image en-
ergy, we formulate the auto-relation function on image
energy to construct a piloting set which includes possi-
ble elements to classify objects and the impurity object
in order to lead the front propagation. We use level
set method to detect the topologic changes for evolu-
tion curves and to catch the objects/impurity.

1. Introduction

Image vision technology has matured substantially in
the last decade to be successfully applied to a vari-
ety of industrial tasks. Three methods, optical device-
based, algorithm-based technology and special image
deice-based are the main in industrial applications. In
the åeld of factory automation, successful applications
of image technology are roughly divided into assem-
bling and inspection. For example to decide a 2D po-
sitions as analogical robot sensor or 3D positions when
measuring automobile's body, surface inspections, in-
specting LSI pattern, and mask and printing board
etc [1][2][3][4]. With the development of cheaper color
cameras, more people have been more and more inter-
ested in digital image application or algorithm tech-
nologies [5][6][9]. There are many successful indus-
trial applications in the past years, but the past works
mostly depend on the constraints of possible pattern
matching. Image technologies for applications, espe-
cially in industry, are strong case-dependence. Be-
cause we want to solve our problem by image tech-
nology instead of paying more cost to some special
material inspection sensor device, it is our intelligent
selection to develop the image algorithm.
The aim of this paper is to introduce level set meth-

ods based on the auto-relation techniques and provide
a basic framework for applications. The key idea of
Level set methods in image plane is implicit curve evo-
lution in the planer image. We notice the fact that
when purity and impurity are mixed in an images,
their diãerent textures and gray values are certainly
bringing about gradients changes. These changes show

us a lot of clues for image classiåcation and recogni-
tion. We induce the propagating interfaces by those
high image energy parts to label the object from their
background. The evolving surface of impurity is pre-
sented as the zero level function. To reduce the compu-
tation cost required by level set formulation scheme, a
new approach exploited by image auto-relation is pro-
posed. Making a piloting set is a process calculating
image energy. It supports level set function a limited
domain and speed up evolving front eãectively.
The present approach is described as followings. The

image pre-process is at the årst. This will take us the
advantages that the changes we are interested in will
not be suppressed by some smoothing, which tends to
suppress the eãects of noise. We introduce the im-
portant auto-correlation method to pilot the interest
point in an image. Such a fact has been noticed that
the border between and soil certainly cause an obvi-
ously image energy changes i.e. gray value changes.
We will illustrate either how the auto-correlation al-
gorithm catches these changes or how its results give
us a coarse pilot on the objectives we are interested
in. We want to classify the coarse positions by some
local windows, to inspect the detail changes and com-
pare the results with our preset models, which are the
features of their Gaussian distributions. Based on the
similarities between the results and the models, we
judge whether a class is accepted as an object soil or
not [14] and these are our following works.
In this paper, we give the auto-relation model in next

section. The pre-process and classiåcation are also
introduced in the section 2. Section 3 describes the
principle of curve evolution based on level set meth-
ods. Some experimental results and discussions are at
the last.

2. Auto-relation Model

2.1 Image pre-precess

In general, any change of signiåcance to us has ef-
fects over a pool of pixels. For many kinds of noise
model, large image derivatives due to noise are an es-
sentially local event. This means that smoothing a
diãerentiated image tends to support the changes we
are interested in and to suppress the eãects of noise.
In a pre-process, the smoothing ålter can be chosen
by taking a model of an edge and using some set of



Fig. 1: The soil grains image for test.

Fig. 2: The horizontal is the horizon-
tal coordinate in Fig.1, the vertical is
M(X) in Eq. (6).

criteria to choose a ålter that gives the best response
to that model. It is diécult to pose this problem as a
two-dimensional problem because edges in 2D can be
curved. Conventionally, the smoothing ålter is chosen
by formulating a one-dimensional problem and then
using a rotationally symmetric version of the ålter
in 2D. In our case, we select a nonlinear rank-value
median ålter for image pre-process. We take all the
gray values of the pixels which lie within the ålter
mask and sort them by ascending gray value. The
rank-value ålter only diãers by the position in the list
from which the gray value is picked out and written
back to the center pixel, well known as median ål-
ter. Let M1=fM1(n; n)g (n is odd) be those gray
values around a pixel. To an array M2 = fM2(k)g
(k = 1; 2; . . . ; S = nÇ n), this ålter use the value
M2(S=2) as it responses. This made us easily adjust
the smoothing scales to diãerent size of objects.

2.2 Auto-relation on image energy

Let I(X)(also denoted as I) be the image function in
an image frame. Given a shift (Åx;Åy) and X=(x,
y), X2 R2. The auto-correlation function is deåned
as:
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where Ix=@I(X)=@x, Iy=@I(X)=@y. Substituting the
above approximation (2) into Eq.(1), we obtain:
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To I(X)=G ÉI, É is the convolution operation, we
change Ä(x; y) as 5I(5I)T , build up a transform re-
lation H(X) in a local window about X.
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X
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where G is a Gaussian with standard deviation one,
Gx=@G/@x, Gy=@G/@y. T (X) is a weight mask to
weight the derivatives over the window. In Eq. (5),
there relations @I/@x=@/@xÉI, @=@xÉ(GÉI)=(@=@xÉ
G)ÉI=@G/@xÉI. This matrix captures the local struc-
ture. The eigenvectors of this matrix are the principal
curvatures of the auto-correlation function. We con-
sider a cost function M(X) :

M(X) = E [H(X)] + C[H(X)] (6)

where E [É], C[É] are the determinant and trace ofH(X )
respectively. For example,M(X) is shown in Fig. 2.

2.3 Image classiåcation

M(X) in Eq. (6) gives the distributions of image en-
ergy clearly. We classify those points by M(X) fur-
ther. Assume the ith point Pi(X) be presented by a
complex OPi, the jth point Pj(X) by OPj , to a con-
stant è1, if it is true that

jOPi ÄOPj j < è1 (7)

Pi(X(i)) and Pj(X(j)) are put into same set Ck, Ck ö
C. C is deåned as the classiåcation set.

C =
s
[

k=1

Ck (8)



Fig. 3: 1: the initial curve; 2 and 3: the evaluating curve; 4: The entire objects are caught.

where s is a preset constant to decide the subsets in
C. The elements in Ck are coarse results classiåed.
Assume the center of gravity of the elements in Ck

be Pc(X), M(X) will be recalculated by Eq. (5) and
Eq. (6) with a smaller preset constant èt (èt < ètÄ1,
t î constant) around Pc(X) in a smaller local window
several times. If the results under èt will be treated as
the part of the soil, the calculations ånish. The reason
we did this is that it is hardly to get complete pixels
about the object, for the reasons that the surface of
any object reçects light in all direction, smaller èt can
use more åne resolutions to analyze objectives.

3. Skeleton of Level Set Methods

Level set methods add dynamics to implicit surfaces.
The key idea that started the level set fanfare was the
Hamilton-Jacobi approach to numerical solutions of a
time-dependent equation for a moving implicit surface.
Given a moving closed hypersurface G(t), we wish to
produce an Eulerian formulation for the motion of the
hypersurface propagating along its normal direction
with speed F , where F can be a function of various
arguments, including the curvature, normal direction,
etc. This propagating interface is embed as the zero
level set of a higher dimensional function û(x, t) (also
denoted as û in this paper). Let û(x, t=0), where x is
a n-dimension space, be deåned by

û(x; t = 0) = D (9)

where D is the signed distance from x to G(t=0),
and plus/minus sign is chosen if the point x is out-
side/inside the initial hypersurface G(t=0). Thus, we
have an initial function û(x, t=0) with the property
that

G(t = 0) = (xjû(x; t = 0) = 0) (10)

Our goal is to produce an equation for the evolving
function û(x; t) which contains the embedded motion
of G as the level set û= 0. Let x be the path of a
point on the propagating front. That is, x(t=0) is a
point on the initial front G(t=0), and dx/dt=F (x)
with the vector dx/dt normal to the front at x. Since
the evolving function û(x, t) is always zero on the
propagating hypersurface, we must have the constraint

û(x; t) = 0 (11)

By the chain rule,

ût +5(x; t)xt = 0 (12)

We then have the evolution equation for û(x, t)

ût + Fj 5ûj = 0 (13)

with a given value of û(x, t=0). This is referred as
Hamilton Jacobi \type" equation because, for certain
forms of the speed function F , we obtain standard
Hamilton Jacobi equation. Because û(x, t) remains a
function as it evolves, we may use a discrete grid in the
domain of x and substitute ånite diãerence approxi-
mations for the spatial and temporal derivatives. We
use a uniform mesh of spacing h, with grid nodes ij,
and employing the standard notation that ûnij is the
approximation to the solution û(ih; jh; nét), where ét
is the time step, we may write

ûn+1ij Äûnij
ét

+ (F)(5ijûnij) = 0 (14)

Here, we have used forward diãerences in time, and let
ûnij be some appropriate ånite diãerences in time, and
let 5ijûnij be some appropriate ånite diãerence opera-
tor for the spatial derivative. To a given speed function
F , we update the front by the modiåed version of an
Engquist-Osher scheme [11]. The front propagation is
illustrated in Fig. 3.

4. Experiments and Discussions

We compute a practical images, which was taken on-
site, by the proposed algorithm. In Fig. 4, using the
original images on the left, we indicated the processes.
Based on the result of Eq. (5) and Eq. (6), the po-
sitions of image energy are detected. We have gotten
two positions or two signiåcant M(X). Locating the
two positions, we give the closed initial front curve for
evolution. This decrease the computation cost obvi-
ously. The results in Fig. 4 also show us that M(X)
bring us less image noise in the closed front curve and,
this is very helpful for the recognition using the ån-
ished evolution results. Fig. 4-4 show that the con-
tour of the objects are caught perfectly. This is one of
successful applications by means of the advantage of
the level set based active contour technique.



Fig. 4: 1: starting contour based on the image auto-relation; 2 and 3: the evaluating
curve; 4: the objects are caught.

5. Conclusions

We proposed in this work a piloted level set methods.
This approach uses traditional rank-value median ålter
as pre-processor, creates an image energy auto-relation
function to lead an initial front propagation in order
to perform classiåcation and calculate features about
their textures and so on for the purpose of recognition.
When diãerent kinds of objects/grains appear on the
same image, most of them will bring about image en-
ergy changes presented by the form of gray gradients.
The auto-relation function is excellent way to describe
these features, especially in the case of objectives have
the global dominant positions in an image, just like the
case of the soil-in-salt. The ånished front propagation
can give more information for recognition. We can ad-
just the cost constants from coarse to åne in a widow
around piloted positions dynamically. Then those fea-
tures can be compared with their models made in ad-
vance. Not limited by this application, the developed
technique will be also available when the environment
is changed, with some modiåcation. Though this ap-
proach faces the problem of computation cost, it still
is a basic frame work.
In this algorithm, if the objects don't have an obvi-

ous energy features in a global detection, it will cause s
in Eq.(8) increased, and hard to be classiåed. We sug-
gest s should be maximum three, number constrain
companies it, or it is an intelligent way to consider
this problem from other bases.
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