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Abstract  
Brain Machines Interfaces provide a digital channel for 
communication in the absence of the biological channels. 
Brain machine interfaces are considered as potential 
devices to rehabilitate patients with motor nerve 
disorders namely those who have lost their motor 
functions as well as communication functions. In this 
paper a study is conducted to understand the functions of 
the motor cortex region of the brain and its role in the 
designing of brain machine interfaces for rehabilitation. 
A survey on the current brain interfaces is also 
presented. 
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1. Introduction  
 Locked-in syndrome is now becoming a popular 
term. Patients with this disease loose total control over 
their motor functions and communication channels. The 
patients are however aware of their surroundings due to a 
still active brain. Modern life support and medication 
help these patients to live longer lives prolonging their 
personal and social dependencies on the society. Current 
research on brain signals has shown the feasibility of 
using brain signals to directly control devices like 
computers. An extended approach is to use this signal to 
control devices like prosthetic arms and wheel chairs. 
This paper aims at highlighting some of the disease 
which disrupt the biological communication channels 
and the possibilities of brain signals to control external 
devices through a digital link. 
 Many disorders can disrupt the neuromuscular 
channels used by the brain to communicate with and 
control its external environment. Amyotrophic lateral 
sclerosis (ALS), brainstem stroke, brain or spinal cord 
injury, cerebral palsy, muscular dystrophies, multiple 
sclerosis, and numerous other diseases impair the neural 
pathways that control muscles or impair the muscles 
themselves. They affect nearly two million people in the 
United States alone, and far more around the 
world .Those most severely affected may lose all 
voluntary muscle control, including eye movements and 
respiration, and may be completely locked in to their 
bodies, unable to communicate in any way. In the 
absence of methods for repairing the damage done by 
these disorders, there are 3 options for restoring function. 

The first is to increase the capabilities of remaining 
pathways. Muscles that remain under voluntary control 
can substitute for paralyzed muscles. People largely 
paralyzed by massive brainstem lesions can often use eye 
movements to answer questions, give simple commands, 
or even operate a word-processing program; and severely 
dysarthric patients can use hand movements to produce 
synthetic speech[1]. The second option is to restore 
function by detouring around breaks in the neural 
pathways that control muscles. In patients with spinal 
cord injury, Electromyography (EMG) activity from 
muscles above the level of the lesion can control direct 
electrical stimulation of paralyzed muscles, and thereby 
restore useful movement .The final option for restoring 
function to those with motor impairments is to provide 
the brain with a new, non-muscular communication and 
control channel, a direct brain–computer interface (BCI) 
for conveying messages and commands to the external 
world. At present, only EEG and related methods, 
which have relatively short time constants, can function 
in most environments, and require relatively simple and 
inexpensive equipment, offer the possibility of a new 
non-muscular communication and control channel, a 
practical BCI. EEG based communication attracted little 
serious scientific attention until recently, for at least 3 
reasons. First, while the EEG reflects brain activity, so 
that a person’s intent could in theory be detected in it, the 
resolution and reliability of the information detectable in 
the spontaneous EEG is limited by the vast number of 
electrically active neuronal elements, the complex 
electrical and spatial geometry of the brain and head, and 
the disconcerting trial to-trial variability of brain function. 
The possibility of recognizing a single message or 
command amidst this complexity, distortion, and 
variability appeared to be extremely remote. Second, 
EEG-based communication requires the capacity to 
analyze the EEG in real-time, and until recently the 
requisite technology either did not exist or was extremely 
expensive. Third, there was in the past little interest in the 
limited communication capacity that a first generation 
EEG-based BCI was likely to offer. Recent scientific, 
technological, and societal events have changed this 
situation.  

2. Motor Functions and the Brain 

The anatomical region of the brain known as 
primary motor cortex is the focal region for muscle 
contractions. Stimulations in this region elicited highly 
localized muscle contractions at various locations in the 



body. This mapping is represented somatotopically on 
the motor cortex, where the surface area devoted to 
controlling the movements of each body part varies in 
direct proportion to the precision of the movements that 
can be made by that part  

The motor cortex is divided into the premotor area 
(or premotor cortex) and the supplementary motor area. 
The premotor cortex is believed to help regulate posture 
by dictating an optimal position to the motor cortex for 
any given movement. The supplementary motor area, for 
its part, seems to influence the planning and initiation of 
movements on the basis of past experience. The mere 
anticipation of a movement triggers neural transmissions 
in the supplementary motor area. Besides the frontal 
cortex, the posterior parietal cortex clearly plays a role in 
voluntary movements, by assessing the context in which 
they are being made. The parietal cortex receives 
somatosensory, proprioreceptive, and visual inputs and 
then uses them to determine such things as the positions 
of the body and the target in space. It thereby produces 
internal models of the movement to be made, prior to the 
involvement of the premotor and motor cortices.  
The parietal lobes are themselves closely interconnected 
with the prefrontal areas, and together these two regions 
represent the highest level of integration in the motor 
control hierarchy. It is here that the decisions are made 
about what action to take. In brain imaging, when 
subjects are asked to move their thumbs, activity is 
observed in the posterior parietal and somatosensory 
areas [2]. 

3. Electroencephalography 
 

EEG is a technique that reads scalp electrical activity 
generated by brain structures.  The EEG is measured 
directly from the cortical surface.  When brain cells or 
neurons are activated, the local current flows are 
produced. EEG measures mostly the currents that flow 
during synaptic excitations of the dendrites of many 
pyramidal neurons in the cerebral cortex. Only large 
populations of active neurons can generate electrical 
activity recordable on the head surface; weak electrical 
signals detected by the scalp electrodes are to be 
massively amplified. The cortex is a dominant part of the 
central nervous system. The highest influence of EEG 
comes from electric activity of cerebral cortex due to its 
surface position [3]. 

3.1 EEG Research History 
The existence of electrical currents in the brain was 

discovered in 1875 by an English Physician Richard 
Caton. In 1924 Hans Berger a German neurologist 
amplified these electrical signals using ordinary radio 
equipment and coined the term electroencephalogram to 
describe brain electric potentials in humans. In 1934 
Adrain and Mathews published a paper   verifying the 
concept of ‘human brain waves’ [or EEG] and identified 
regular oscillations around 10 to 12 Hz which they 
termed as alpha rhythm. Brain waves have been 
categorized into four basic groups: beta (>13 Hz); alpha 

(8-13 Hz); theta (4-8Hz); delta (0.5 -4 Hz) [3]. Until early 
1990s, most of the researches on EEG were focused on 
analyzing brain related disease and sleep patterns. The 
early 1990s witnessed a rapidly growing body of 
research involving detection of human brain responses 
and putting these techniques to appropriate uses to help 
disabled people. Most of the research during this period 
involved surgically implanting electrodes to acquire the 
signals. With the introduction of external electrodes 
during the turn of the century [2000] EEG has initiated 
the development of BCI to control the cursor of 
computers. Currently this research has been directed 
towards producing BMI which can control a prosthetic 
arm or a wheelchair [1]. 

 

3.2  International 10-20 System 
 

To perform consistent testing of EEG recordings a 
system called the International 10-20 electrode 
placement system was developed [4]. This system 
created a method of labeling electrode locations to be 
used worldwide. The EEG electrodes are placed on the 
scalp at 10 and 20 percent of a measured distance. Figure 
1 shows the international 10-20 Electrode placement 
positions [4]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1 International 10-20 Electrode Placement 
System 

 

4.  Brain Machine Interface: Techniques 
 

BMI can be broadly classified into two types, 
Sensory and Motor. Sensory BMI are designed to replace 
a damaged organ such as   retinal prosthesis to help the 
blind and cochlear implants for the deaf. The Motor BMI, 
on the other hand, seeks to translate electrical brain 
activity that represents intent to move into useful 
commands to external devices. Sensory BMI requires 
very accurate placement of a few tiny electrodes that 
stimulate the appropriate site in the brain, and the 
device’s job is to simulate the role of the appropriate 
sensory organ as accurately as possible. In motor BMI, 
the electrodes are placed “anywhere” in the appropriate 
cortex area and their number is much higher. The 



decoding problem for motor BMI is much harder, since 
there is little knowledge of how the motor cortex encodes 
information, and also due to only a small fraction of the 
cells is being probed [1].  There are two basic types of 
motor BMI: non-invasive and invasive. Research on 
non-invasive BMI started in the 1980s by measuring 
brain electrical activity over the scalp. 

Brain computer interfaces [BCI] have been 
developed to move computer cursors. Through training, 
subjects can learn to control their brain activity in a 
predetermined fashion that is classified by a pattern 
recognition algorithm, and converted into one of several 
discrete commands usually cursor actions (up/down, 
left/right) on a computer display. The computer presents 
a set of possibilities to the users, and they choose one of 
them through these cursor actions, until a task is 
completed. This approach, requiring only signal 
amplification and classification is known as a brain 
computer interface. BCI classification algorithms 
combine machine learning techniques with biomedical 
domain   knowledge [1]. 

Five main techniques are adopted in designing brain 
computer interface [5].  

a. P300 Detection  

The P300 component is a positive going evoked 
response potential (ERP) in the EEG with a latency of 
about 300ms following the onset of a rarely occurring 
stimulus the subject has been instructed to detect. 
Detecting the P300 response reliably requires averaging 
the EEG response over many presentations of the stimuli.  

b. EEG mu-rhythm Conditioning 

 Subjects’ mu-rhythm [Appears at 9-11 Hz this 
activity appears to be associated with motor cortex [6]. 
Amplitudes are detected   while training them to move a 
computer cursor up and down on the screen.  Results also 
implied that frequency bands other than mu and beta 
ranges may contain useful information. 

c. Visual Evoked Potential Detection 

Electrodes are placed over the visual cortex to detect 
changes in evoke potentials when the subject 
concentrates on a particular block out of the 64 blocks on 
a computer screen. 

d. EEG Pattern Mapping 

 In this technique the EEG patterns are detected and 
classified for a particular action. Readiness potentials or 
EEG patterns are studied during experiments such as 
moving joystick in four directions. 

e. Detecting lateral hemisphere differences 

 Induced lateral differences in relative brain 
hemisphere activation are studied during experiments 
where subjects hear arguments through left, right or both 
headphones. 

4.1 Need for Brain Machine Interfaces 

EEG signals are being studied to rehabilitate people 

with motor disorders. About 10 million people all over 
the world suffer from neurodegenerative diseases such as 
cerebral palsy or amyotrophic lateral sclerosis [locked-in 
people], stroke and paralysis [7]. These diseases impair 
their ability to control their muscles and are unable to 
grasp objects, work with appliances or communicate in 
any way except through their brains.  In Malaysia the 
increase of stroke and paralytic patients is  of major 
concern,  modern life support technology allows these 
individuals even those who are locked–in, to live long 
lives, so that the personal, social and economic burdens 
of their disabilities are prolonged and severe.              

 
There is a growing concern in the community today 

to help these disabled people and improve their living 
conditions. The Malaysian government has implemented 
many social welfare schemes such as rehabilitation and 
independent living policies to improve the conditions of 
these patients through rehabilitation service and by 
provision of assistive and rehabilitative devices.  
 
4.2 Motor Disabilities and Restoring Options 
 

 Many disorders can disrupt the neuromuscular 
channels through which the brain communicates with 
and controls its external environment. Amyotrophic 
lateral sclerosis, brain stem stroke, brain or spinal cord 
injury, cerebral palsy, muscular dystrophies, multiple 
sclerosis and numerous other diseases impair the neural 
pathway that controls the muscles themselves.  
Peripheral  nerve disorders like Guillain-Barré Strohl 
Syndrome, Chronic Inflammatory Demyelinating 
Polyneuropathy, Polyneuropathies, Diabetic 
Neuropathies, Mononeuropathies - including carpal 
tunnel syndrome and ulnar neuropathies 
Peripheral Nerve Injuries,Amyotrophic Lateral Sclerosis 
(ALS) , Radiculopathies , Small Fiber Neuropathies, and 
Occupational Neuropathies also effect the 
communication channels and these patients can be 
provided rehabilitation through BMI . 

Restoring these motor functions can be done 
depending on the severity of the impairment. In case of 
partial impairments, restoration can be done by 
increasing capabilities of remaining pathways, such as 
substituting muscles under control for paralyzed muscles, 
namely eye movements in the case of brainstem 
impairment and hand movements in the case of severely 
dysarthric patients.  One other option is by rerouting 
around the neural breakaways that control muscles, for 
example using EMG signals from areas above the level 
of nervous break to restore useful movements. When the 
above two options are not possible the only solution to 
restore motor function is to provide a non muscular 
control channel directly from the brain to devices such as 
wheelchairs. Patients with diseases like locked-in 
syndrome and partial paralysis are not able to produce 
any type of movement. Independent to this the sensory 
and cognitive functions of the brain are not or partially 
affected. These patients are very much aware of their 
environment but are not able to communicate through 



speech or eye movements. Though many physiological 
signals such as EMG, fMRI, MEG and PET are available, 
research has proved that only EEG signals and related 
methods which have  short time constants, can function 
in most environments  and require relatively simple and 
inexpensive equipment that  offer the possibility of a new 
non-muscular channel for a practical BMI [9].  

The development of BMI to control wheel chairs is 
still under proof of concept stage. The next section 
analyses some of the research efforts and studies towards 
developing a BMI for motor movement and subsequent 
control of a powered wheel chair.  
  

4.3 Brain Machine Interfaces and Rehabilitation 

EEG based BCI/BMI has been under study since the 
early nineties. BCI only provide interface between brain 
and computer, so far BCI have been developed to control 
computer cursors on the other hand BMI are more 
focused towards developing interfaces between brain and 
devices like prosthetic arms , wheelchairs etc.. BMI are 
used to replace impaired motor nerves and to provide an 
alternative communication channel to control devices 
like a wheelchair. Research studies have been conducted 
to study the EEG signals evoked by motor movements 
and recognition of these signals towards developing 
interfaces. Most research studies on EEG are currently 
focused on developing algorithms for classification of 
EEG signals related to movement. A review of the 
literature shows that three methods have been adopted in 
extracting the EEG feature data, namely Autoregression, 
Independent Component Analysis and Neural Networks.  
This section reviews some of these research studies. 

A  DSLVQ classifier for feature selection of EEG 
signals was proposed by Pregenzer et al [10]. Two 
different types of experiments are used to show that 
DSLVQ is an appropriate feature selector for a BCI. The 
first experiment employs DSLVQ to select the most 
distinct electrode positions from a large number of 
possible positions. The second experiment uses DSLVQ 
to analyze   the importance of 1-Hz bands of EEG power 
spectra for the prediction of three different types of 
movement. The conclusions of this study show that the 
most important electrode position and frequency bands 
are not identical for all subjects.  

Guger and et al [10] use Common Spatial Pattern 
(CSP) filters to analyze real-time EEG signals. 
Experiments involved three subjects. Twenty seven EEG 
electrodes overlaying the whole primary and sensory 
motor cortex are used.  The method proposed uses 
covariance to design common spatial patterns and is 
based on simultaneous diagonalization of two covariance 
matrices. The decomposition of the EEG leads to new 
time series which is optimal for discrimination of two 
populations. The patterns are designed such that signals 
resulting from filtering with CSP have maximum 
variance for left trials and minimum variance for right 
trials and vice versa. The research demonstrates that CSP 
can be used to anise EEG signals in real time in order to 
give feedback to subjects as classification accuracy 

improved with few days of trials. 

Pfurtscheller and et al [11,12] have studied the 
separability of left and right motor imagery using 
autoregressive parameters. Four subjects were used in 
the experimental process and EEG, EMG and EOG 
signals are recorded from electrodes overlapping sensory 
motor area. Subject specific frequency components are 
selected using the DSLVQ classifier. Due to the laterality 
of the EEG patterns, the side [left or right] of the 
imagined movement can be determined with an online 
error between 10 to 31.8 %. The online classification of 
subject specific frequency bands were analyzed by a 
neural network. An overall improvement of classification 
was achieved using the off-line adaptive autoregressive 
model [ARR]. However the ARR method is found to be 
sensitive to artifacts, therefore artifacts must be 
controlled. 

Haselsteiner and Pfurtscheller [13] have compared 
two different neural network topologies to classify a 
single trial EEG data from a BCI.  The classifiers are the 
MLP and the FIR MLP. The static weight of the standard 
MLP is replaced with finite impulse response filters in 
the FIR MLP. The study shows that FIR MLPs performed 
better can standard MLP with lesser error rates.   

Mahalanobis distance-based classifiers are analyzed 
by Babiloni et al [14], to classify the diagonal and full 
covariance matrix features of the EEG signals. EEG data 
are recorded from four electrodes placed in the C3, P3, 
C4 and Imagined hand movement recognition using Low 
Resolution Surface Laplacian and Linear P4 position of 
International 10-20 system. These classifiers were able to   
detect imagination of hand movements with a 
classification accuracy of 98%.   

Another imagined hand movement recognition 
using Low Resolution Surface Laplacian and Linear 
Classifier is proposed by Concotti et al [15] which use 
nine electrodes; the classifiers have an accuracy of 90%.  

Neural network based classifiers of EEG features 
have been investigated by some researchers [16, 17,18]. 
Back propagation neural classifiers have also been used 
to analyze the EEG signals related to mental tasks.  

Research on BMI is being extended to the next stage 
of translating them to control signals to operate devices. 

 
 

Conclusions 
 

BMI is still at the proof-of-concept stage, currently 
this work is undertaken by bio and neuroscience 
researchers. The contributions from computer engineers, 
psychologists and mathematician are essential to take 
this to the next stage. The developments of more accurate 
data models that carry more spatio-temporal information 
from the spikes in the motor cortex are required. The 
signals are non-gaussian and no stationary, so they are 
very difficult to model well with present algorithms [1]. 

 So far, control BMI has focused on cursor 
movements, applying this concept to a mechanical hand 
or a device such as a wheelchair will prove to be more 



challenging. Although the theoretical and technical 
problems are difficult, BMI research is at a very exciting 
phase, thanks to the tight integration of research in 
computer science, engineering, and neuroscience. There 
is optimism about impacting the daily lives of 
paraplegics in the same way that sensory BMIs benefited 
hearing impaired patients [1].  

The non-invasive BMI has potential applicability 
beyond the restoration of lost movement and 
rehabilitation in paraplegics and would enable normal 
individuals to have direct brain control of external 
devices in their daily lives. Therefore, the impact of BMI 
on our society promises to surpass that of any earlier 
digital technology. 
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