

Abstract

A universal solution for management of dynamic sensor

networks will be presented, covering both networking and

application layers. A network of intelligent modules,

overlaying the sensor network, collectively interprets

mission scenarios in a special high-level language, which

can start from any nodes and cover the network at runtime.

The spreading scenarios are extremely compact, which may

be useful for energy saving communications. The code will

be exhibited for distributed collection and fusion of sensor

data, also for tracking mobile targets by scattered and

communicating sensors.

Keywords: sensor networks, intelligent management,

distributed scenario language, distributed interpreter,

tracking objects, hierarchical data fusion.

1 Introduction

Sensor networks are a sensing, computing and

communication infrastructure that allows us to instrument,

observe, and respond to phenomena in the natural

environment, and in our physical and cyber infrastructure [1,

2]. The sensors themselves can range from small passive

microsensors to larger scale, controllable platforms. Their

computation and communication infrastructure will be

radically different from that found in today's Internet-based

systems, reflecting the device- and application-driven nature

of these systems.

Of particular interest are wireless sensor networks

(WSN) [3,4], consisting of spatially distributed autonomous

devices using sensors to cooperatively monitor physical or

environmental conditions, such as temperature, sound,

vibration, pressure, motion or pollutants, at different

locations. WSN, however, have many additional

problems in comparison to the wired ones. The

individual devices in WSN are inherently resource

constrained--they have limited processing speed, storage

capacity, and communication bandwidth. These devices

have substantial processing capability in the aggregate,

but not individually, so we must combine their many

vantage points on the physical phenomena within the

network itself.

In addition to one or more sensors, each node in a

sensor network is typically equipped with a radio

transceiver or other wireless communications device, a

small microcontroller, and an energy source, usually a

battery. The size a single sensor node can vary from

shoebox-sized nodes down to devices the size of grain of

dust.

Typical applications of WSNs include monitoring,

tracking, and controlling. Some of the specific

applications are habitat monitoring, object tracking,

nuclear reactor controlling, fire detection, traffic

monitoring, etc. In a typical application, a WSN is

scattered in a region where it is meant to collect data

through its sensor nodes. They could be deployed in

wilderness areas, where they would remain for many

years (monitoring some environmental variable) without

the need to recharge/replace their power supplies. They

could form a perimeter about a property and monitor the

progression of intruders (passing information from one

node to the next). At present, there are many uses for

WSNs throughout the world.

In a wired network like the Internet, each router

Intelligent Management of Distributed Dynamic Sensor Networks

Peter Sapaty

Institute of Mathematical Machines and Systems, National Academy of Sciences

Glushkova Ave 42, 03187 Kiev Ukraine

Tel: +380-44-5265023, Fax: +380-44-5266457, sapaty@immsp.kiev.ua

Masanori Sugisaka

Department of Electrical and Electronic Engineering, Oita University

700 Oaza Dannoharu 870-1192 Japan

Tel: 097-554-7831, Fax: 097-554-7841, msugi@cc.oita-u.ac.jp

Jose Delgado-Frias

School of Electrical Engineering & Computer Science,

Washington State University, Pullman, WA 99164-2752, USA

Tel: (509)335-1156, Fax: (509)335-3818, jdelgado@eecs.wsu.edu

Joaquim Filipe

Departamento Sistemas e Informática,

Escola Superior de Tecnologia de Setúbal, 2910-761 Setúbal, Portugal

+351 265 790 040, +351 265 721 869 (fax), j.filipe@est.ips.pt

Nikolay Mirenkov

University of Aizu, Aizu-Wakamatsu, Fukushima-ken 965-8580, Japan

+81-242-37-2500, +81-242-37-2528 (fax), nikmir@u-aizu.ac.jp

connects to a specific set of other routers, forming a routing

graph. In WSNs, each node has a radio that provides a set of

communication links to nearby nodes. By exchanging

information, nodes can discover their neighbors and perform

a distributed algorithm to determine how to route data

according to the application’s needs. Although physical

placement primarily determines connectivity, variables such

as obstructions, interference, environmental factors, antenna

orientation, and mobility make determining connectivity a

priori difficult. Instead, the network discovers and adapts to

whatever connectivity is present.

Fig. 1 shows what we will mean as a sensor network for

the rest of this paper. It will hypothetically consist of (many)

usual sensors with local communication capabilities, and (a

limited number of) those that can additionally transmit

collected information outside the area (say, via satellite

channels). Individual sensors can be on a move, some may

be destroyed while others added at runtime (say, dropped

from the air) to join the existing ones in solving

cooperatively distributed problems.

The aim of this paper is to show how any imaginable

distributed problems can be solved by dynamic self-

organized sensor networks, if to increase their intelligence

with a novel distributed processing and control ideology

and technology effectively operating in computer networks.

S

S
S

S

S

S

S
S

S

Transmitter
Transmitter

Sensor

Sensor

Sensor

Local communication
capabilities

Figure 1. Distributed sensors and their emergent network.

2 The Distributed Management Model

The distributed information technology we are using

here is based on a special Distributed Scenario Language

(DSL) describing parallel solutions in computer networks as

a seamless spatial process rather than traditional collection

and interaction of parts (agents).

Spreading
activities

Hierarchical
echoing and
control

Advances in space

Start

Spreading

activities

Figure 2. Runtime coverage of space.

Parallel scenarios can start from any interpreter of the

language, and then spread and cover the distributed space

at runtime, as shown in Fig. 2. The overall management

of the evolving scenarios is accomplished via the

distributed track system providing hierarchical command

and control for the execution of scenarios, with a variety

of special echo messages. We will mention here only key

features of DSL, as the language details can be found

elsewhere in the current proceedings [5] and from its

previous versions described in [6-8].

A DSL program, or wave, is represented as one or

more constructs called moves (separated by a comma),

embraced by a rule, as follows:

wave → rule ({ move , })

Rules may serve as various supervisory, regulatory,

coordinating, integrating, navigating, and data processing

functions, operations or constraints over moves. A move

can be a constant or variable, or (recursively) an

arbitrary wave itself:

 move → constant | variable | wave

Variables classify as nodal, associated with space

positions and shared by different waves, frontal, moving

in space with program control, and environmental,

accessing the environment navigated. Constants may

reflect both information and physical matter.

Wave, being applied in a certain position of the

distributed world, can perform certain actions in a

distributed space, terminating in the same or in other

positions. It provides final result that unites local results

in the positions (nodes) reached, and also produces

resultant control state. The (distributed) result and the

state can be subsequently used for further data

processing and decision making on higher program

levels. Parallel waves can start from different nodes in

parallel, possibly intersecting in the common distributed

space when evolving in it independently.

If moves are ordered to advance in space one after the

other (which is defined by a proper rule), each new move

is applied in parallel in all the nodes reached by the

previous move. Different moves (by other rules) can also

apply independently from the same node, reaching new

nodes in parallel.

The functional style syntax shown above can express

any program in DSL, but if useful, other notations can be

used, like infix one. For example, an advancement in

space can use period as operator (separator) between

successive steps, whereas parallel actions starting from

same node can be separated by semicolon. For improving

readability, spaces can be inserted in any places of the

programs--they will be automatically removed before

execution (except when embraced by quotes).

The interpreter may have its own physical body (say,

in the form of mobile or humanoid robot), or can be

mounted on humans (mobile phones). A network of the

interpreters can be mobile and open, changing its volume

and structure, as robots or humans can move at runtime.

We will be assuming for the rest of this paper that every

sensor has the DSL interpreter installed, which may have

a software implementation or can be a special hardware

chip.

In the following sections we will show and explain

the DSL code for a number of important problems to be

solved by advanced sensor networks, which confirms the

efficiency of the proposed distributed computational and

control model.

3 Collecting Events throughout the Region

Starting from all transmitter nodes, the following

program regularly (with interval of 60 sec.) covers stepwise,

through local communications between sensors, the whole

sensor network with a spanning forest, lifting information

about observable events in each node reached. Through this

forest, by the internal interpretation infrastructure, the lifted

data in nodes is moved and fused upwards the spanning

trees, with final results collected in transmitter nodes and

sent in parallel outside the system using rule Transmit

(See Fig.3).

Hop (all transmitters).

Loop (

 Sleep (20).

 IDENTITY = TIME.

 Transmit (

 Fuse (

 Repeat (

 Free (observe (events));

 Hop (directly reachable, first come)

)

)

)

)

S

S
S

S

S

S

S
S

S

Failed

Start

Start

Fused

data

Global

loop Global

loop

Repeated

parallel

navigation

Figure 3. Parallel navigation and data collection.

Globally looping in each transmitter node (rule Loop),

the program repeatedly navigates (rule Repeat) the sensor

set (possibly, in competition with navigation started from

other transmitters), activating local space observation

facilities in parallel with the further navigation. The

resultant forest-like coverage is guaranteed by allowing

sensor nodes to be visited only once, on the first arrival in

them. The hierarchical fusion rule Fuse, collecting the

scattered results, also removes record duplicates, as the

same event can be detected by different sensors, leaving

only most credible in the final result.

To distinguish each new global navigation process from

the previous one, it always spreads with a new identity for

which, for example, current system time may be used (using

environmental variables IDENTITY and TIME of the

language).

4 Regular Creation of Hierarchical

Infrastructures

In the previous program, we created the whole

spanning forest for each global data collection loop,

which may be costly. To optimize this process, we may

first create a persistent forest infrastructure, remembering

which nodes were linked to which, and then use it for a

frequent regular collection and fusion of the scattered

data.

As the sensor neighborhood network may change

over time, we can make this persistent infrastructure

changeable too, updating it with some time interval

(much larger, however, than the data collection one),

after removing the previous infrastructure version. This

can be done by the following program, which regularly

creates top-down oriented links named infra starting

from the transmitter nodes (as shown in Fig. 4).

Hop (all transmitters).

Loop (

 Sleep (120).

 IDENTITY = TIME.

 Repeat (

 Hop (directly reachable, first come).

 Remove links (all).

 Stay (create link (-infra, BACK))

)

)

S

S
S

S

S

S

S
S

S infra

infra

infra

Persistent

links

Looping

updates
Looping

updates

Active
code

Figure 4. Runtime creation of hierarchical infrastructure.

This infrastructure creation program provides

competitive asynchronous spatial processes, so each time,

even if the sensors did not change their positions, the

resultant infrastructure may differ, as shown in Fig. 5.

S

S
S

S

S

S

S
S

S infra

infra

infra

infra

Figure 5. Another possible infrastructure.

Having created the persistent infrastructure, we can use

it frequently by the event collection program which can be

simplified and updated now as follows:

Hop (all transmitters).

Loop (

 Sleep (20).

 Transmit (

 Fuse (

 Repeat (

 Free (observe (events));

 Hop (+infra)

)

)

)

)

The global infrastructure creation program (looping

slowly) and the event collection and fusion one (looping

fast) can operate simultaneously, with the first one guiding

the latter on the data collection routes, which may change

over time.

5 Routing Local Events to Transmitters

We have considered above the collection of distributed

events in the top-down and bottom-up mode, always with

the initiative stemming from root nodes of the hierarchy, the

latter serving as parallel and distributed tree-structured

computer.

In this section, we will show quite an opposite, fully

distributed solution, where each sensor node, being an

initiator itself, is regularly observing the vicinity for the case

an event of interest might occur. Having discovered an

event, each node independently from others launches a

spatial cyclic self-routing process, via the infrastructure

links built before, which eventually comes to the transmitter

node, bringing with it the event information. The data

brought to transmitters should be fused with the already

existing there. The corresponding program will be as

follows.

Hop (all nodes).

Frontal (Transfer). Nodal (Result).

Loop unconditional (

 Sleep (5).

 Nonempty(Transfer = observe (events)).

 Repeat (hop (-infra)).

 Fuse and assign (Result, Transfer)

)

S

S

S

S

S

S

S
S

S infra

infra

Event
discovered

Event

discovered

Observing

Observing

Observing

Figure 6. Routing scattered events to transmitters.

The transmitter nodes, accumulating and fusing local

events, arriving from sensor nodes independently, can

send them outside the system. Different strategies can be

used here. For example, one could be waiting until there

are enough event records collected in the transmitter

before sending them, and the other one waiting for some

threshold time and only then sending what was

accumulated (if any at all). The following program

combines these two cases within one solution, where

arriving data from sensors is accumulated in nodal

variable Result.

Hop (all transmitters).

Loop unconditional (

 Or (

 Quantity (nodal ((Result)) >= 100,

 (sleep 60. Result != nil)

).

 Transmit and clear (Result).

)

This program in every transmitter can work in

parallel with the previous program collecting events and

looping in every sensor (in transmitters as well, as they

are assumed to be sensors too), and also with the earlier

program, starting in transmitters, for the regular

infrastructure updates.

6 Tracking Mobile Objects

Let us consider some basics of using DSL for

tracking mobile (ground or aerial) objects moving

through a region controlled by scattered but

communicating sensors. Each sensor can handle only

limited part of space, so to keep the whole observation

continuous, the object seen should be handed over

between the neighboring sensors during its movement,

along with the data accumulated during its tracking and

analysis.

The space-navigating power of the model discussed

here can catch each object and accompany it individually,

while moving between the interpreters in different

sensors, just accompanying the movement in physical

space by an active mobile intelligence spreading in a

computer network [6]. This allows us to have an

extremely compact and integral solution unattainable by

other approaches based on communicating agents. The

following program, starting in all sensors, catches an

object it sees, and follows it wherever it should go if not

seen at this point any more (more correctly: if its

visibility becomes lower that the given threshold).

Hop (all nodes).

Frontal (Threshold) = 0.1.

Frontal (Object) = search (aerial).

Visibility (Object) > Threshold.

Repeat (

 Loop (

 visibility (Object) > Threshold

).

 Maximum destination (

 Hop (all directly reachable).

 Visibility (Object) > Threshold

)

)

The program investigates the object’s visibility in all

neighboring sensors in parallel, and moves control along

with the program code and accumulated data (the latter not

shown in this simplified program) to the neighboring sensor

seeing it best -- again, if its visibility exceeds the threshold

given (see Fig. 7).

S

S
S

S

S

S

S
S

S

Moving

object

Tracking mobile
intelligence

Looping
in nodes

Figure 7. Active tracking of a mobile object.

This was only a skeleton program in DSL, showing the

space tracing techniques for controlling single physical

objects. It can be extended to follow collectively behaving

groups of physical objects as a whole (say, flocks of animals,

mobile robots, or troops). The spreading individual object-

tracing intelligences can cooperate in the distributed sensor

space, and can be optimized jointly for the pursuit of global

mission goals.

7 Averaging Parameters from a Region

Let us consider how it can be possible to asses the

generalized situation in a distributed region given, say, by a

set of its border coordinates, in a fully distributed way,

where sensors located in the region can communicate with

direct neighbors only. Assume, for example, that the

parameter of interest is maximum pollution level throughout

the whole region (it may also be temperature, pressure,

radiation level, etc.) together with coordinates of the

location showing this maximum.

The following program, starting in all sensors located in

the region, regularly measures the pollution level in its

vicinity, updates local maximum, and by communication

with direct neighbors attempts to increase maximum there

too, if this is possible. Eventually, after some expected time

of such local communication activity, all sensors will have

the same maximum value registered in them, which will be

the one of whole region too (see the overall organization in

Fig. 8).

Nodal (Level, Max, Region).

Frontal (Transfer).

Region = region definition.

Hop (all nodes, Region).

Loop unconditional (

 Or parallel (

 Loop unconditional (

 Sleep (5).

 Level = measure (pollution).

 Stay (Level > Max. Max = Level).

 Transfer = Max.

 Hop (directly reachable, Region).

 Transfer > Max. Max = Transfer

),

 Sleep (120)

).

 Level == Max.

 Transfer = Max & WHERE.

 Repeat (hop (- infra)).

 Transmit (Transfer)

)

S

S

S

S

S

S

S

S

Generalized

result

Local communications

S

Self-routing

to transmitter

Region of interest

Emergent
leader

node

Figure 8. Distributed averaging with active routing.

As there may be many sensors located in the region of

interest, we will need forwarding only a single copy of

this resultant maximum value to a transmitter for an

output. This can be achieved by delegating this only to

the sensor whose measured local value is equal to the

accumulated maximum in it, which will correspond to

the overall region’s maximum after some time. Having

understood that it is the leader (after a proper time delay),

such a sensor organizes repeated movement to the

nearest transmitter via the earlier created infrastructure,

carrying the resultant maximum value in frontal variable

Transfer, outputting it outside the system in the

transmitter reached, as shown in Fig. 8.

Similar organization may be introduced for finding

averaged values, or even for assembling the global

picture of the whole region with any details collected by

individual sensors (the latter may be costly, however,

with more practical solution shown in the next section).

8 Assembling Full Picture of a Region

To collect details from some region via local sensors

and merge them into the whole picture could, in principle,

be possible via local single-level exchanges only, as in

the previous section, but the amount of communications

and data transfer, as well as the time needed, may be

unacceptably high. We were finding only a single value

(maximum) via frequent internode communications, with

minimal length exchanges. But for obtaining the detailed

global picture of the region or some distributed

phenomenon, we may have to gradually grow this picture

in every sensor node (or in many of them)

simultaneously, with high communication intensity

between nodes. Also, there may be difficult to determine

the completeness of this picture staying in local sensors

only.

It is clear that much higher integrity and process

structuring, especially with the use of hierarchies, may

be required in order to see the whole distributed picture

via dispersed sensors with limited capabilities in nodes and

emergent communications. Different higher-level

approaches can be proposed in DSL for solving such classes

of problems.

We will show only a skeleton here of how to make

spanning tree coverage of the distributed phenomenon, and

then hierarchically collect, merge, and fuse partial results

from sensors into the global picture. The latter to be

forwarded to the nearest transmitter via the previously

created infrastructure using links infra, as shown in Fig. 9.

S

S

S

S

S

S

S

S

S

Full

picture

Initiator

Self-routing
to transmitter

Active space

coverage

Echoed

partial results

Figure 9. Space coverage with global picture fusion.

Hop (

 random, all nodes,

 detected (phenomenon)

).

Loop (

 Frontal (Full) = fuse (

 Repeat (

 Free (collect (phenomenon));

 Hop (

 directly reachable, first come,

 detected (phenomenon)

)

)

).

 Repeat (hop (-infra)).

 Transmit (Full)

)

In more complex situations, which can be effectively

programmed in DSL too, we may have a number of

simultaneously existing phenomena, which can intersect in a

distributed space; we may also face combined phenomena

integrating features of different ones. The phenomena (like

flocks of birds, manned or unmanned groups or armies,

spreading fire or flooding) covering certain regions may

change in size and shape, they may also move as a whole

having internal organization, etc.

In the previous versions of this language [6, 7], a variety

of complex topological problems in computer networks had

been investigated and successfully programmed in a fully

distributed and parallel manner, which included connectivity,

matching with graph patterns, weak and strong components

like articulation points and cliques, also diameter and radius,

optimum routing tables, and the like, as well as self-

recovery after indiscriminate damages (see [6] especially).

9 Conclusions

We have presented a universal and flexible approach

of how to convert distributed sensor networks with

limited resources in nodes and casual communications

into a universal spatial machine capable of not only

collecting and forwarding data but also solving complex

computational and logical problems as well as making

autonomous decisions in distributed environments.

The approach is based on quite a different type of a

high-level language allowing us to represent system

solutions in the form of integral seamless spatial

processes navigating and covering distributed worlds at

runtime. This makes parallel and distributed application

programs extremely short, which may be especially

useful for the energy saving communications between

sensors.

The code compactness and simplicity are achieved

because most of traditional synchronization and data or

agent exchanges (which are also on a high level, with

minimum code sent) are shifted to efficient automatic

implementation, allowing us concentrate on global

strategies and solutions instead.

References

[1] D. Culler, D. Estrin, and M. Srivastava,

“Overview of Sensor Networks” , Computer,

August 2004, pp.41-49. Published by the IEEE

Computer Society.

[2] C-Y Chong, and S. P. Kumar, “Sensor

Networks: Evolution, Opportunities, and

Challenges”, Proc. of the IEEE, Vol. 91, No. 8,

August 2003, pp.1247-1256.

[3] Wireless sensor network--Wikipedia, the free

encyclopedia, www.wikipedia.org.
[4] F. Zhao and L. Guibas, Wireless Sensor

Networks: An Information Processing Approach

(The Morgan Kaufmann Series in Networking),

Morgan Kaufmann, 2004, 376p.

[5] P. Sapaty, A. Morozov, R. Finkelstein, M.

Sugisaka, D. Lambert, “A New Concept of

Flexible Organization for Distributed Robotized

Systems”, Proc. Twelfth International

Symposium on Artificial Life and Robotics

(AROB 12th’07), Beppu, Japan, Jan 25-27,

2007. 8p.

[6] P. S. Sapaty, Mobile Processing in Distributed

and Open Environments, John Wiley & Sons,

ISBN: 0471195723, New York, February 1999,

436p. (www.amazon.com).

[7] P. S. Sapaty, Ruling Distributed Dynamic

Worlds, John Wiley & Sons, New York, May

2005, 256p, ISBN 0-471-65575-9

(www.amazon.com).

[8] P. Sapaty, M. Sugisaka, R. Finkelstein, J.

Delgado-Frias, N. Mirenkov, “Advanced IT

Support of Crisis Relief Missions”, Journal of

Emergency Management, Vol.4, No.4, ISSN

1543-5865, July/August 2006, pp.29-36

(www.emergencyjournal.com).

