
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract 
 

A universal solution for management of dynamic sensor 

networks will be presented, covering both networking and 

application layers. A network of intelligent modules, 

overlaying the sensor network, collectively interprets 

mission scenarios in a special high-level language, which 

can start from any nodes and cover the network at runtime. 

The spreading scenarios are extremely compact, which may 

be useful for energy saving communications. The code will 

be exhibited for distributed collection and fusion of sensor 

data, also for tracking mobile targets by scattered and 

communicating sensors. 
 

Keywords: sensor networks, intelligent management, 

distributed scenario language, distributed interpreter, 

tracking objects, hierarchical data fusion. 
 

 

1  Introduction 
 

Sensor networks are a sensing, computing and 

communication infrastructure that allows us to instrument, 

observe, and respond to phenomena in the natural 

environment, and in our physical and cyber infrastructure [1, 

2]. The sensors themselves can range from small passive 

microsensors to larger scale, controllable platforms. Their 

computation and communication infrastructure will be 

radically different from that found in today's Internet-based 

systems, reflecting the device- and application-driven nature 

of these systems. 

Of particular interest are wireless sensor networks 

(WSN) [3,4], consisting of spatially distributed autonomous 

devices using sensors to cooperatively monitor physical or 

environmental conditions, such as temperature, sound, 

vibration, pressure, motion or pollutants, at different 

locations. WSN, however, have many additional 

problems in comparison to the wired ones. The 

individual devices in WSN are inherently resource 

constrained--they have limited processing speed, storage 

capacity, and communication bandwidth. These devices 

have substantial processing capability in the aggregate, 

but not individually, so we must combine their many 

vantage points on the physical phenomena within the 

network itself.  

In addition to one or more sensors, each node in a 

sensor network is typically equipped with a radio 

transceiver or other wireless communications device, a 

small microcontroller, and an energy source, usually a 

battery. The size a single sensor node can vary from 

shoebox-sized nodes down to devices the size of grain of 

dust. 

Typical applications of WSNs include monitoring, 

tracking, and controlling. Some of the specific 

applications are habitat monitoring, object tracking, 

nuclear reactor controlling, fire detection, traffic 

monitoring, etc. In a typical application, a WSN is 

scattered in a region where it is meant to collect data 

through its sensor nodes. They could be deployed in 

wilderness areas, where they would remain for many 

years (monitoring some environmental variable) without 

the need to recharge/replace their power supplies. They 

could form a perimeter about a property and monitor the 

progression of intruders (passing information from one 

node to the next). At present, there are many uses for 

WSNs throughout the world. 

In a wired network like the Internet, each router 
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connects to a specific set of other routers, forming a routing 

graph. In WSNs, each node has a radio that provides a set of 

communication links to nearby nodes. By exchanging 

information, nodes can discover their neighbors and perform 

a distributed algorithm to determine how to route data 

according to the application’s needs. Although physical 

placement primarily determines connectivity, variables such 

as obstructions, interference, environmental factors, antenna 

orientation, and mobility make determining connectivity a 

priori difficult. Instead, the network discovers and adapts to 

whatever connectivity is present.   

Fig. 1 shows what we will mean as a sensor network for 

the rest of this paper. It will hypothetically consist of (many) 

usual sensors with local communication capabilities, and (a 

limited number of) those that can additionally transmit 

collected information outside the area (say, via satellite 

channels). Individual sensors can be on a move, some may 

be destroyed while others added at runtime (say, dropped 

from the air) to join the existing ones in solving 

cooperatively distributed problems.  

The aim of this paper is to show how any imaginable 

distributed problems can be solved by dynamic self-

organized sensor networks, if to increase their intelligence 

with a novel distributed processing and control ideology 

and technology effectively operating in computer networks. 
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Figure 1. Distributed sensors and their emergent network. 
 

 

2   The Distributed Management Model 
 

The distributed information technology we are using 

here is based on a special Distributed Scenario Language 

(DSL) describing parallel solutions in computer networks as 

a seamless spatial process rather than traditional collection 

and interaction of parts (agents).  
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Figure 2.  Runtime coverage of space. 

Parallel scenarios can start from any interpreter of the 

language, and then spread and cover the distributed space 

at runtime, as shown in Fig. 2. The overall management 

of the evolving scenarios is accomplished via the 

distributed track system providing hierarchical command 

and control for the execution of scenarios, with a variety 

of special echo messages. We will mention here only key 

features of DSL, as the language details can be found 

elsewhere in the current proceedings [5] and from its 

previous versions described in [6-8]. 

A DSL program, or wave, is represented as one or 

more constructs called moves (separated by a comma), 

embraced by a rule, as follows: 
 

wave       →    rule ({ move , }) 
 

Rules may serve as various supervisory, regulatory, 

coordinating, integrating, navigating, and data processing 

functions, operations or constraints over moves. A move 

can be a constant or variable, or (recursively) an 

arbitrary wave itself: 
 

 move        → constant | variable | wave 
 

Variables classify as nodal, associated with space 

positions and shared by different waves, frontal, moving 

in space with program control, and environmental, 

accessing the environment navigated. Constants may 

reflect both information and physical matter. 

Wave, being applied in a certain position of the 

distributed world, can perform certain actions in a 

distributed space, terminating in the same or in other 

positions. It provides final result that unites local results 

in the positions (nodes) reached, and also produces 

resultant control state. The (distributed) result and the 

state can be subsequently used for further data 

processing and decision making on higher program 

levels.  Parallel waves can start from different nodes in 

parallel, possibly intersecting in the common distributed 

space when evolving in it independently. 

If moves are ordered to advance in space one after the 

other (which is defined by a proper rule), each new move 

is applied in parallel in all the nodes reached by the 

previous move. Different moves (by other rules) can also 

apply independently from the same node, reaching new 

nodes in parallel. 

The functional style syntax shown above can express 

any program in DSL, but if useful, other notations can be 

used, like infix one. For example, an advancement in 

space can use period as operator (separator) between 

successive steps, whereas parallel actions starting from 

same node can be separated by semicolon. For improving 

readability, spaces can be inserted in any places of the 

programs--they will be automatically removed before 

execution (except when embraced by quotes).  

The interpreter may have its own physical body (say, 

in the form of mobile or humanoid robot), or can be 

mounted on humans (mobile phones). A network of the 

interpreters can be mobile and open, changing its volume 

and structure, as robots or humans can move at runtime. 

We will be assuming for the rest of this paper that every 

sensor has the DSL interpreter installed, which may have 

a software implementation or can be a special hardware 

chip.  

In the following sections we will show and explain 

the DSL code for a number of important problems to be 



 
solved by advanced sensor networks, which confirms the 

efficiency of the proposed distributed computational and 

control model.  

 

 

3  Collecting Events throughout the Region 
 

Starting from all transmitter nodes, the following 

program regularly (with interval of 60 sec.) covers stepwise, 

through local communications between sensors, the whole 

sensor network with a spanning forest, lifting information 

about observable events in each node reached. Through this 

forest, by the internal interpretation infrastructure, the lifted 

data in nodes is moved and fused upwards the spanning 

trees, with final results collected in transmitter nodes and 

sent in parallel outside the system using rule Transmit 

(See Fig.3). 
 

Hop (all transmitters). 

Loop ( 

 Sleep (20). 

 IDENTITY = TIME. 

 Transmit ( 

  Fuse ( 

   Repeat ( 

    Free (observe (events));  

    Hop (directly reachable, first come) 

   ) 

  ) 

 ) 

) 
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Figure 3. Parallel navigation and data collection. 

 

Globally looping in each transmitter node (rule Loop), 

the program repeatedly navigates (rule Repeat) the sensor 

set (possibly, in competition with navigation started from 

other transmitters), activating local space observation 

facilities in parallel with the further navigation. The 

resultant forest-like coverage is guaranteed by allowing 

sensor nodes to be visited only once, on the first arrival in 

them. The hierarchical fusion rule Fuse, collecting the 

scattered results, also removes record duplicates, as the 

same event can be detected by different sensors, leaving 

only most credible in the final result.  

To distinguish each new global navigation process from 

the previous one, it always spreads with a new identity for 

which, for example, current system time may be used (using 

environmental variables IDENTITY and TIME of the 

language). 

 

4 Regular Creation of Hierarchical 

Infrastructures 
 

In the previous program, we created the whole 

spanning forest for each global data collection loop, 

which may be costly. To optimize this process, we may 

first create a persistent forest infrastructure, remembering 

which nodes were linked to which, and then use it for a 

frequent regular collection and fusion of the scattered 

data.  

As the sensor neighborhood network may change 

over time, we can make this persistent infrastructure 

changeable too, updating it with some time interval 

(much larger, however, than the data collection one), 

after removing the previous infrastructure version. This 

can be done by the following program, which regularly 

creates top-down oriented links named infra starting 

from the transmitter nodes (as shown in Fig. 4). 
 

Hop (all transmitters). 

Loop ( 

 Sleep (120). 

 IDENTITY = TIME. 

 Repeat ( 

  Hop (directly reachable, first come). 

  Remove links (all). 

  Stay (create link (-infra, BACK)) 

 ) 

) 
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Figure 4. Runtime creation of hierarchical infrastructure. 

 

This infrastructure creation program provides 

competitive asynchronous spatial processes, so each time, 

even if the sensors did not change their positions, the 

resultant infrastructure may differ, as shown in Fig. 5. 
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Figure 5.  Another possible infrastructure. 

 



 
Having created the persistent infrastructure, we can use 

it frequently by the event collection program which can be 

simplified and updated now as follows: 
 

Hop (all transmitters). 

Loop ( 

 Sleep (20). 

 Transmit ( 

  Fuse ( 

   Repeat ( 

    Free (observe (events));  

    Hop (+infra) 

   ) 

  ) 

 ) 

) 
 

The global infrastructure creation program (looping 

slowly) and the event collection and fusion one (looping 

fast) can operate simultaneously, with the first one guiding 

the latter on the data collection routes, which may change 

over time. 

 

 

5  Routing Local Events to Transmitters 
 

We have considered above the collection of distributed 

events in the top-down and bottom-up mode, always with 

the initiative stemming from root nodes of the hierarchy, the 

latter serving as parallel and distributed tree-structured 

computer.  

In this section, we will show quite an opposite, fully 

distributed solution, where each sensor node, being an 

initiator itself, is regularly observing the vicinity for the case 

an event of interest might occur. Having discovered an 

event, each node independently from others launches a 

spatial cyclic self-routing process, via the infrastructure 

links built before, which eventually comes to the transmitter 

node, bringing with it the event information. The data 

brought to transmitters should be fused with the already 

existing there. The corresponding program will be as 

follows. 
 

Hop (all nodes).  

Frontal (Transfer). Nodal (Result). 

Loop unconditional ( 

 Sleep (5). 

 Nonempty(Transfer = observe (events)). 

 Repeat (hop (-infra)). 

 Fuse and assign (Result, Transfer)   

)  
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Figure 6.  Routing scattered events to transmitters. 

 

The transmitter nodes, accumulating and fusing local 

events, arriving from sensor nodes independently, can 

send them outside the system. Different strategies can be 

used here. For example, one could be waiting until there 

are enough event records collected in the transmitter 

before sending them, and the other one waiting for some 

threshold time and only then sending what was 

accumulated (if any at all). The following program 

combines these two cases within one solution, where 

arriving data from sensors is accumulated in nodal 

variable Result. 
 

Hop (all transmitters). 

Loop unconditional ( 

 Or ( 

  Quantity (nodal ((Result)) >= 100, 

  (sleep 60. Result != nil) 

 ). 

 Transmit and clear (Result). 

) 
 

This program in every transmitter can work in 

parallel with the previous program collecting events and 

looping in every sensor (in transmitters as well, as they 

are assumed to be sensors too), and also with the earlier 

program, starting in transmitters, for the regular 

infrastructure updates. 

 

 

6  Tracking Mobile Objects 
 

Let us consider some basics of using DSL for 

tracking mobile (ground or aerial) objects moving 

through a region controlled by scattered but 

communicating sensors. Each sensor can handle only 

limited part of space, so to keep the whole observation 

continuous, the object seen should be handed over 

between the neighboring sensors during its movement, 

along with the data accumulated during its tracking and 

analysis.  

The space-navigating power of the model discussed 

here can catch each object and accompany it individually, 

while moving between the interpreters in different 

sensors, just accompanying the movement in physical 

space by an active mobile intelligence spreading in a 

computer network [6]. This allows us to have an 

extremely compact and integral solution unattainable by 

other approaches based on communicating agents. The 

following program, starting in all sensors, catches an 

object it sees, and follows it wherever it should go if not 

seen at this point any more (more correctly: if its 

visibility becomes lower that the given threshold).  
 

Hop (all nodes). 

Frontal (Threshold) = 0.1.  

Frontal (Object) = search (aerial). 

Visibility (Object) > Threshold. 

Repeat ( 

 Loop ( 

  visibility (Object) > Threshold 

 ). 

 Maximum destination ( 

   Hop (all directly reachable).  

   Visibility (Object) > Threshold 

 ) 

) 
 

The program investigates the object’s visibility in all 



 
neighboring sensors in parallel, and moves control along 

with the program code and accumulated data (the latter not 

shown in this simplified program) to the neighboring sensor 

seeing it best -- again, if its visibility exceeds the threshold 

given (see Fig. 7). 
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Figure 7.  Active tracking of a mobile object. 

 

This was only a skeleton program in DSL, showing the 

space tracing techniques for controlling single physical 

objects. It can be extended to follow collectively behaving 

groups of physical objects as a whole (say, flocks of animals, 

mobile robots, or troops). The spreading individual object-

tracing intelligences can cooperate in the distributed sensor 

space, and can be optimized jointly for the pursuit of global 

mission goals. 

 

 

7  Averaging Parameters from a Region  
 

Let us consider how it can be possible to asses the 

generalized situation in a distributed region given, say, by a 

set of its border coordinates,  in a fully distributed way, 

where sensors located in the region can communicate with 

direct neighbors only. Assume, for example, that the 

parameter of interest is maximum pollution level throughout 

the whole region (it may also be temperature, pressure, 

radiation level, etc.) together with coordinates of the 

location showing this maximum.  

The following program, starting in all sensors located in 

the region, regularly measures the pollution level in its 

vicinity, updates local maximum, and by communication 

with direct neighbors attempts to increase maximum there 

too, if this is possible.  Eventually, after some expected time 

of such local communication activity, all sensors will have 

the same maximum value registered in them, which will be 

the one of whole region too (see the overall organization in 

Fig. 8). 
 

Nodal (Level, Max, Region). 

Frontal (Transfer). 

Region = region definition. 

Hop (all nodes, Region).  

Loop unconditional ( 

 Or parallel ( 

  Loop unconditional ( 

   Sleep (5). 

   Level = measure (pollution). 

   Stay (Level > Max. Max = Level). 

   Transfer = Max. 

   Hop (directly reachable, Region).  

   Transfer > Max. Max = Transfer 

  ), 

  Sleep (120) 

 ). 

 Level == Max.  

 Transfer = Max & WHERE. 

 Repeat (hop (- infra)).  

 Transmit (Transfer) 

) 
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Figure 8.  Distributed averaging with active routing. 

 

As there may be many sensors located in the region of 

interest, we will need forwarding only a single copy of 

this resultant maximum value to a transmitter for an 

output. This can be achieved by delegating this only to 

the sensor whose measured local value is equal to the 

accumulated maximum in it, which will correspond to 

the overall region’s maximum after some time. Having 

understood that it is the leader (after a proper time delay), 

such a sensor organizes repeated movement to the 

nearest transmitter via the earlier created infrastructure, 

carrying the resultant maximum value in frontal variable 

Transfer, outputting it outside the system in the 

transmitter reached, as shown in Fig. 8.  

Similar organization may be introduced for finding 

averaged values, or even for assembling the global 

picture of the whole region with any details collected by 

individual sensors (the latter may be costly, however, 

with more practical solution shown in the next section). 

 

 

8   Assembling Full Picture of a Region 
 

To collect details from some region via local sensors 

and merge them into the whole picture could, in principle, 

be possible via local single-level exchanges only, as in 

the previous section, but the amount of communications 

and data transfer, as well as the time needed, may be 

unacceptably high. We were finding only a single value 

(maximum) via frequent internode communications, with 

minimal length exchanges. But for obtaining the detailed 

global picture of the region or some distributed 

phenomenon, we may have to gradually grow this picture 

in every sensor node (or in many of them) 

simultaneously, with high communication intensity 

between nodes. Also, there may be difficult to determine 

the completeness of this picture staying in local sensors 

only.  

It is clear that much higher integrity and process 

structuring, especially with the use of hierarchies, may 

be required in order to see the whole distributed picture 



 
via dispersed sensors with limited capabilities in nodes and 

emergent communications. Different higher-level 

approaches can be proposed in DSL for solving such classes 

of problems.  

We will show only a skeleton here of how to make 

spanning tree coverage of the distributed phenomenon, and 

then hierarchically collect, merge, and fuse partial results 

from sensors into the global picture. The latter to be 

forwarded to the nearest transmitter via the previously 

created infrastructure using links infra, as shown in Fig. 9. 
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Figure 9.  Space coverage with global picture fusion. 

 
 

Hop ( 

 random, all nodes,  

 detected (phenomenon) 

). 

Loop ( 

 Frontal (Full) = fuse ( 

  Repeat ( 

   Free (collect (phenomenon));  

   Hop ( 

    directly reachable, first come, 

    detected (phenomenon) 

   ) 

  ) 

 ). 

 Repeat (hop (-infra)). 

 Transmit (Full) 

) 
 

In more complex situations, which can be effectively 

programmed in DSL too, we may have a number of 

simultaneously existing phenomena, which can intersect in a 

distributed space; we may also face combined phenomena 

integrating features of different ones. The phenomena (like 

flocks of birds, manned or unmanned groups or armies, 

spreading fire or flooding) covering certain regions may 

change in size and shape, they may also move as a whole 

having internal organization, etc.  

In the previous versions of this language [6, 7], a variety 

of complex topological problems in computer networks had 

been investigated and successfully programmed in a fully 

distributed and parallel manner, which included connectivity, 

matching with graph patterns, weak and strong components 

like articulation points and cliques, also diameter and radius, 

optimum routing tables, and the like, as well as self-

recovery after indiscriminate damages (see [6] especially). 

 

9  Conclusions 
 

We have presented a universal and flexible approach 

of how to convert distributed sensor networks with 

limited resources in nodes and casual communications 

into a universal spatial machine capable of not only 

collecting and forwarding data but also solving complex 

computational and logical problems as well as making 

autonomous decisions in distributed environments.  

The approach is based on quite a different type of a 

high-level language allowing us to represent system 

solutions in the form of integral seamless spatial 

processes navigating and covering distributed worlds at 

runtime. This makes parallel and distributed application 

programs extremely short, which may be especially 

useful for the energy saving communications between 

sensors. 

The code compactness and simplicity are achieved 

because most of traditional synchronization and data or 

agent exchanges (which are also on a high level, with 

minimum code sent) are shifted to efficient automatic 

implementation, allowing us concentrate on global 

strategies and solutions instead. 
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