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Abstract 

 
A fault tolerant scheme of a bi-directional magnetic 

bearing is presented.  The bearing continues to function 
normally even though one coil among four radial coils 
and one coil of two axial coils fail.  The dynamic 
properties and load capacity remain unchanged for the 
suggested fault tolerant control scheme. A one-
dimensional circuit that represents the bi-directional 
bearing is utilized to obtain the optimal bearing 
parameters such as the radial pole face area, number of 
coil turns, and permanent magnet size. The results 
identify advantages of the fault tolerant scheme and bi-
directional bearing improvements relative to 
conventional magnetic suspension. Bidirectional 
magnetic bearings find applications in robotic joints. 
 
1  Introduction 
 

Magnetic bearings find greater use in high speed, high 
performance, applications such as gas turbines, energy 
storage flywheels, and pumps since they have many 
advantages over conventional fluid film or rolling 
element bearings, such as lower friction losses, 
lubrication free, temperature extremes, no wear, quiet, 
high speed operations, actively adjustable stiffness and 
damping, and dynamic force isolation. Unlike 
heteropolar bearings, homopolar magnetic bearings have 
a unique biasing scheme that directs the bias flux flow 
into the active pole plane where it energizes the working 
air gaps, and then returns through the dead pole plane 
and the shaft sleeve. Some of the results on modeling, 
design, and control of homopolar magnetic bearings are 
shown in literature. Meeks [1] utilized a permanent 
magnet biased homopolar magnetic bearing to provide 
smaller, lighter, and power-efficient operation. Fault-
tolerance of the magnetic bearing system is of great 
concern for highly critical applications of 
turbomachinery since a failure of any one control 
components may lead to the complete system failure.  
Much research has been devoted to fault-tolerant 
heteropolar magnetic bearings. Maslen and Meeker [2] 
introduced a fault-tolerant 8-pole magnetic bearing 
actuator with independently controlled currents and 
experimentally verified it in [3]. Flux coupling in 
heteropolar magnetic bearings allows the remaining coils 
to produce force resultants identical to the unfailed 
bearing, if the remaining coil currents are properly 

redistributed. Na and Palazzolo [4, 5] also investigated 
the optimized realization of fault-tolerant magnetic 
bearing actuators, so that fault-tolerant control can be 
realized for an 8-pole bearing for up to 5 coils failed. 
This paper introduces a fault-tolerant 4-active-pole 
permanent magnet biased, bi-directional magnetic 
bearing such that the bearing can preserve the same 
decoupled magnetic forces identical to the unfailed 
bearing even after any one coil out of 4 coils fails. 
 
 
2  Magnetic Circuit Analysis 
 

Figure 1 shows a schematic drawing of a permanent 
magnet biased combo bearing. Four independent coils 
are wound on each radial pole to supply control fluxes. 
A pair of coils supplies axial control fluxes. 

 

1..AP

2..AP

3..AP

4..AP

2..AP

4..AP

 
 

Fig. 1 Schematic of a Bidirectional Magnetic Bearing 
 

 
Fig. 2 Circuit for a Bidirectional Bearing 

 
The permanent magnets are represented as the source 

pmc LH and the total permanent magnet reluctance pR . 
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The coercive force and the length of the permanent 
magnet are cH  and pmL , respectively. The reluctance in 
air gap j of the active pole plane is;  

00a
g

R j
j µ
=                                (1)  

where 
                jjj yxgg θθ sincos0 −−=                        (2)   

 
The parameters 0µ , 0a , and 0g represent the 

permeability of air, the pole face area of the active pole, 
and nominal air gap, respectively, and x  and y  are the 
journal displacements. The axial air gap reluctances are 
described as; 
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where 
                zgg zz −= 01  ,  zgg zz += 02                     (4)   

and where 0za  and 0zg  are the axial pole face area 
and the nominal axial gap, respectively, and z  is the 
rotor displacement along the axial direction. Applying 
Ampere’s law and Gauss’s law to the radial magnetic 
circuit leads to a matrix equation. 
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and jφ , ji , zji , n , and n~  are fluxes, currents through j-
th pole, axial currents, the number of radial coil turns, 
and the number of axial coil turns, respectively. Equation 
(5) is rewritten in vector form as; 
 

 NIIHHR zz ++=Φ                           (6) 
The flux densities in the gaps are reduced by flux 

leakage, fringing, and saturation of magnetic material. 
The flux density vector is then; 

 
      Φ= −1AB ς                                (7) 

 
where 

                       ]),,,([ 0000 aaaadiagA =  
 

The parameter ς  represents flux fringing factor, and 
can be empirically estimated. Magnetic forces developed 
in the radial pole plane are described as; 

 

BDBF T

ϕϕ ∂
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where the air gap energy matrix is; 
 

))2/(( 00 µagdiagD j=                           (9) 
 

and where ϕ  is either x  or y .  Applying Ampere’s 
law and Gauss’s law to the axial magnetic circuit leads 
to a matrix equation. 

 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−

−−
+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−
+

−=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+

−

2

1

2

1
1

21

0
~

~~
)(

0

11

z

z

A

A

eq

lpA

pmcl

z

z

A

z

zz

i
i

R
n

nn

R
H

RRR
LHR

R
R

RR

φ
φ

        (10) 
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Equation (10) can be rewritten in vector form as; 
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The flux density vector is then; 
 

   zzzz AB Φ= −1ς                              (12) 
where 

                       ]),([ 00 zzz aadiagA =  
 



The parameter zς  represents the flux fringing factor in 
the axial air gaps. Magnetic forces developed in the axial 
pole plane are described as; 

z
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where the air gap energy matrix is; 
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3   Fault Tolerant Control 
 

The currents distributed to the radial poles are 
generally expressed as a distribution matrix T and 
control voltage vector v . The current vector is; 

vTI =                                (15) 
 

where 
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and xv and yv  are x  and y control voltages, 
respectively. For example, the current distribution 
scheme for unfailed radial poles is; 
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The currents distributed to the axial plane are 
expressed as; 
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T , and zv is z control voltage.  For 

example, the current distribution scheme for unfailed 
axial poles is; 
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The remaining three currents, if one coil fails, are 
redistributed such that the same opposing poles, C-core 
like, control fluxes still can be realized. The calculated 
distribution matrix for the 4th  coil failed operation is; 
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The nonlinear magnetic forces of xF , yF , and zF can 
be linearized about equilibrium positions and the control 
voltages by using Taylor series expansion. The 
linearized magnetic forces are; 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z

y

x

vzzvzyvzx

vyzvyyvyx

vxzvxyvxx

pzzpzypzx

pyzpyypyx

pxzpxypxx

z

y

x

v
v
v

kkk
kkk
kkk

z
y
x

kkk
kkk
kkk

F
F
F

 

           (20) 
 

or 
VKZKF vp +−=                         (21) 

 

The flux coupling between the axial and radial planes 
can be determined by the cross coupled stiffness 
properties of Eq. (20). The linearized magnetic forces 
calculated at the equilibrium points ( 0x = 2 mils, 0y = -1 
mils, 0z = 3 mils, 0xv = 0.5 volts, 0yv = 0.3 volts, 0zv = 1 
volts) after the 4-th radial coil and an axial coil failed 
operation are; 
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The fault-tolerant control scheme can be easily 

implemented in a physical controller (DSP). The 
controller consists of two independent parts, which are a 
feedback voltage control law and an adaptive current 
distribution mechanism. Though any control algorithm 
for magnetic bearing systems appearing in the literature 
can be utilized with the fault tolerant scheme, for sake of 
illustration, a simple PD feedback control law is used to 
stabilize the system.  

                         ϕϕϕ
&

dpc KKv +=                            (22) 

),( yx∈ϕ  
 
While the feedback control law remains unaltered 

during the failure the appropriate current distribution 
matrix T  can be continuously updated using an adaptive 
current distribution mechanism. Failure status vectors 
and the corresponding distribution matrices for the 5 
possible states including an unfailed vector can be 



tabulated in a reference table and stored in the DSP 
controller as a part of searching algorithm. The 
distribution matrix corresponding to the failure vector is 
implemented in the controller. By prior experience this 
series of actions for failure detection, searching for T , 
and replacement by the new T  can be implemented in 
one loop time of a fast ( > 15K sec-1 ) DSP controller. 
Any one coil out of 4 coils is free to fail while bearing 
properties such as the load capacity and stiffness remain 
invariant, if T~  is replaced by 1T , 2T , 3T , and 4T  shortly 
after failure. 

 
 

4   Conclusion 
 

A fault tolerant current distribution scheme is 
developed for a bi-directional, permanent magnet biased, 
homopolar magnetic bearing.  The bearing preserves the 
same magnetic forces before and after failure even 
though one coil among four radial coils and one coil of 
two axial coils fail. A one-dimensional circuit that 
represents the bi-directional bearing is analyzed to obtain 
the optimal bearing parameters such as the radial pole 
face area, number of coil turns, and permanent magnet 
size. The results show advantages of the fault tolerant 
scheme and bi-directional bearing improvements relative 
to conventional magnetic suspension. Fault tolerance of 
the magnetic bearing actuator can be achieved at the 
expense of additional hardware requirements and 
reduction of overall bearing load capacity.   

These bidirectional magnetic bearings with fault 
tolerant capability can be used as robot joints. Since 
magnetic bearing supported robot arms can avoid oil 
lubrication and dust generation, they can be used for 
robots in clean environment, in vacuum chambers, or in 
space. They also have some more advantages over 
conventional robot joints such as frictionless 
manipulation, force control, force sensing, active 
vibration control. 
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