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Abstract
In this paper, we describe an algorithm for ac-

quiring occupancy grid maps with mobile robots.
The standard occupancy grid mapping developed by
Elfes and Moravec in the mid-Eighties decomposes
the high-dimensional mapping problem into many
one-dimensional estimation problems which are then
tackled independently. Because of the independencies
between neighboring grid cells, it often generates
maps that are inconsistent with the sensor data. To
overcome it, we propose the cluster which is a set of
cells. The cells in the clusters are tackled dependently
with another occupancy grid mapping with EM
algorithm. The occupancy grid mapping with EM
algorithm yields more consistent maps, especially in
the cluster. As we use mapping algorithm adaptively
with clusters according to the sensor measurements,
our mapping algorithm is faster and more accurate
than the previous mapping algorithms.
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1 Introduction

Robotic mapping has been a highly active research
area in robotics and AI for a few decades. Robotic
mapping addresses the problem of acquiring spa-
tial models of physical environments through mobile
robots. There are a number of mapping algorithms.
However, the occupancy grid mapping is more pop-
ular than others, since it has the reputation of be-
ing extremely robust and easy to implement. Once
mapped through occupancy grid mapping, they en-
able various key functions necessary for mobile robot
navigation, such as localization, path planning, colli-
sion avoidance, and people finding.

Occupancy maps have been built using various sen-
sors, such as sonar sensor, laser range finders, and

stereo vision, etc. However, all these sensors are sub-
ject to errors often referred to as measurement noise.
In addition, sonar sensors cover an entire cone in space
and form a single sonar measurement it is impossible
to say where in the cone the object is. The sonar sen-
sors are also sensitivity to the angle of an object sur-
face relative to the sensor and the reflective properties
of the surface. The above properties of sensors make
a mapping problem be difficult and lead inconsistent
map.

The occupancy grid mapping resolves such prob-
lems by generating probabilistic maps. As the name
suggests, occupancy grid maps are represented by
girds. Namely, they decompose the high-dimensional
mapping problem into many one-dimensional estima-
tion problems which are then tackled independently.
Because of the independency of neighboring cells, they
often generate maps that are inconsistent with the
data, particularly in cluttered environments.

To overcome it, we define the cluster which is a set
of cells. The cluster is the region that has the high
probability to be inconsistent with the sensor data
when the standard occupancy grid mapping is used.
Existing occupancy grid mapping algorithms do the
task with the emphasis on individual cells. However,
our approach maps with the emphasis on clusters. As
making the cluster and choosing the optimal mapping
algorithm according to the sensor measurements, maps
generated by our approach more accurate than ones
generated by the previous occupancy grid mapping al-
gorithm. Our mapping algorithm is also as fast as the
standard occupancy grid mapping algorithm.

2 Standard Occupancy Grid Mapping

The Standard occupancy grid mapping approach
(Elfes, 1989; Moravec, 1988)[2][3] constitutes two al-
gorithms mainly. First, it decomposes a multidimen-
sional (typically 2D or 3D) tessellation of space into



many independent cells. Second, each cell calculates
a probabilistic estimate of its state. To calculate this
estimate, techniques such as Bayesian reasoning are
then employed on the grid cell level. And each cell is
tackled independently.

Let m be the occupancy grid map. The grid cell
has the index 〈x, y〉 to store a probabilistic occupancy,
which is mx,y. Occupancy grid maps are estimated
from sensor measurements. Let z1, · · · , zT denote the
measurements from time 1 through time T . The mea-
surement is composed of a sonar scan and the robot
pose at which the measurement was taken. The robot
pose which is assumed to be known is xy coordinates
of the robot and heading direction. Each measurement
carries information about the occupancy of many gird
cells. Thus, the problem addressed by occupancy grid
mapping is the problem of determining the probability
of occupancy of each grid cell mx,y given the measure-
ments z1, · · · , zT .

p(mx,y | z1, · · · , zT ) (1)

For computational reasons, it is common practice to
calculate the log-odds instead of estimating the above
posterior. The log-odds is defined as follows.

lTx,y = log
p(mx,y | z1, · · · , zT )

1− p(mx,y | z1, · · · , zT )
(2)

The assumption in standard occupancy grid mapping
is the static world and conditional independence given
knowledge of each individual grid cell mx,y. Two as-
sumptions and Bayes rule allow us to simplify the pos-
terior to following:

p(mx,y | z1, · · · , zt)

=
p(mx,y | zt)p(zt)p(mx,y | z1, · · · , zt−1)

p(mx,y)p(zt | z1, · · · , zt−1)
(3)

Let mx,y be freeness of the grid cell. The probability
of the freeness of grid cell can be calculated as same
way.

p(mx,y | z1, · · · , zt)

=
p(mx,y | zt)p(zt)p(mx,y | z1, · · · , zt−1)

p(mx,y)p(zt | z1, · · · , zt−1)
(4)

By dividing (3) by (4) and adapting logarithm, the
desired log-odds is expressed as follow:

ltx,y = log
p(mx,y | zt)

1− p(mx,y | zt)
+ log

1− p(mx,y)
p(mx,y)

+ lt−1
x,y

(5)
Finally, the desired posterior occupancy probability
p(mx,y|z1, · · · , zT ) can be recovered from the log-odds
representation of the map.

Standard occupancy grid mapping does not take
the occupancy of neighboring cells into account. It
makes the crucial independence assumption that the
occupancy of a cell can be predicted regardless of a
cell’s neighbors. Herein lies a major problem of the
standard occupancy approach. This leads to incorrect
map.

3 Adaptive Occupancy Grid Mapping
With Clusters

This section presents an algorithm to improve the
problems of the previous occupancy grid mapping. A
key idea is adapting the cluster which is a set of cells.
The cells in the cluster mean that they have the high
probability to be inconsistent with the sensor data
when the standard occupancy grid mapping is used.
Unlike existing occupancy grid mapping algorithm,
our approach does the mapping with the emphasis
on the clusters. One cluster doesn’t affect the oth-
ers, since the cluster is independent each other. The
occupancy of the cells in the cluster is calculated with
the occupancy grid mapping proposed by Thrun in
2003[1]. Using Expectation Maximization algorithm,
in short EM, the alternative mapping algorithm solves
the mapping problem as maintaining the dependen-
cies between neighboring cells. Hence, it leads to the
more accurate maps than the standard occupancy grid
mapping in the cluster. The clusters are made with
the neural networks[4][5][6] which is a powerful tool in
pattern recognition.

To make the cluster, we use the neighboring sensor
measurements which are the input of neural networks.

P = [p1, · · · , pR] (6)

R is the number of the sensor measurements used. The
output of neural networks, y, is ′1′ if the region swept
by the sensors is cluttered or erroneous place. Other-
wise y is ′0′. That is, if y is ′1′, we assemble the cells
in that region and make a new cluster.

The occupancy of cells out of cluster is calculated
with the standard occupancy grid mapping algorithm
explained in section 2. The binary occupancy of cells
in the cluster is calculated with the alternative occu-
pancy grid mapping proposed by Thrun.

Let Ki the number of obstacles in the sensor cone
of the i-th measurement. Let Dt = {dt,1, · · · , dt,Kt}
denote the distances to these obstacles and ordered
in increasing order. To describe the multiple causes
of a sensor measurement zi, the new variables, called



correspondence variables, are defined as follow:

ct = {ct,∗, ct,0, ct,1, · · · , ct,Kt} (7)

Each of these variables corresponds to exactly one
cause of the measurement zt. If ct,k is 1 for 1 ≤ k ≤
Kt, the measurement is caused by the k-th obstacle.
If ct,0 is 1, none of the obstacles were detected and the
sensor returns a max-range reading. The random vari-
able ct,∗ corresponds to the case where a measurement
was purely random. The log-likelihood of all data and
correspondences is written as follows:

log p(Z, C|m) =
∑

t

log p(zt, ct|m) (8)

Here Z denotes the set of all measurements and C is
the set of all correspondences ct for all data. Not calcu-
lating the probability of the correspondence variables
but Maximization the likelihood of the data is impor-
tant, since the probability of correspondence variables
is unobservable. This is achieved by maximizing the
expected log-likelihood E[log p(Z,C|m)|Z, m], where
the expectation is taken over the correspondence vari-
ables C. The expected log-likelihood can be obtained
as follows:

E[log p(Z,C|m)|Z, m]

=
∑

t

[E[log p(ct)|zt, m] + log
1√

2πσ2

−1
2
[E[ct,∗|zt,m] log

z2
max

2πσ2

+E[ct,0|zt,m]
(zt − zmax)2

σ2

+
Kt∑

k=1

E[ct,k|zt,m]
(zt − dt,k)2

σ2
]] (9)

Maximizing the above expected log-likelihood is the
final goal. To do this, expectation maximization algo-
rithm, EM algorithm, is used. The EM algorithm is
one such elaborate technique. The EM algorithm is a
general method of finding the maximum-likelihood es-
timate of the parameters of an underlying distribution
form a given data set when the data is incomplete or
has missing values.

As the above way, we choose the optimal map-
ping algorithm according to the sensor measurements,
namely clusters. Hence, maps generated by our ap-
proach are faster and more accurate than ones gen-
erated by the previous occupancy grid mapping algo-
rithm.

4 Simulation

In order to test our approach, we applied our ap-
proach to learning grid maps using simulated data.
Our main finding are that the maps generated our ap-
proach are more accurate and the approach has less
time than the previous occupancy grid mapping algo-
rithm, such as the standard occupancy grid mapping
algorithm and the alternative occupancy grid mapping
algorithm with EM.

(a)

time:0.172s time:48.656s time:5.047s
(b) (c) (d)

Figure 1: Narrow open door without error

(a)

time:0.156s time:101.078s time:18.828s
(b) (c) (d)

Figure 2: Corridor with error

The sensor measurements are gathered in a corri-
dor while driving by an open door. The mobile robot
is equipped with a circular array of 24 sonar sensors.



Figure 1(a) shows a narrow open door as a first exam-
ple. The width of the door is two times wider than
the width of mobile robot. Hence, the mobile robot
can pass through the door, but it may be difficult to
control. Figure 1(b) shows the result of the standard
occupancy grid mapping algorithm. In the standard
occupancy grid mapping, a narrow open door is not
detected, but other places are similar to Figure 1(a).
Figure 1(c) is obtained by the alternative occupancy
grid mapping with EM. In Figure 1(b), the door is de-
tected, but it takes much time to calculate. In Figure
1(d) generated by our approach, the door is detected
and it takes less time than the occupancy grid map-
ping with EM. Figure 2 shows the result of corridor
with the error measurements. Figure 2(a) is a simu-
lated environment. As Figure 2(b) shows map of the
standard occupancy grid mapping, map is incorrect
because of the sensor error. In Figure 2(c), the alter-
native occupancy grid mapping detect incorrectly in
one place though it is better than (b). Unlike Figure
2(b) and Figure 2(c), Figure 2(d) shows an accurate
map. As Figure 2(d) is generated by our approach,
the map is similar to the environment(a). Because of
clusters, our approach is more accurate than the occu-
pancy grid mapping with EM in erroneous place. Our
approach takes also less time than others.

As a result, because our approach maps with the
emphasis on the clusters, maps generated with adap-
tive occupancy grid mapping algorithm, more accurate
and faster than the others.

5 Conclusion

In this paper, the adaptive occupancy grid mapping
algorithm is proposed. Unlike existing occupancy grid
mapping algorithm, our approach relies on the clus-
ters. The clusters are the region that have the high
probability to be inconsistent with the sensor data.
Neural networks is used to make a cluster. According
to the cluster, we use optimal occupancy grid mapping
algorithm. As seeing in simulation result, we can map
more accurate and faster than the previous occupancy
grid mapping.
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