

A Distributed Precedence Queue Mechanism to Assign
Efficient Bandwidth in CAN Networks

Ho-Seek Choi, Jang-Myung Lee

Department of Electronics Engineering, Pusan National University
San 30 Jangjeon-dong Kumjeong-ku, Busan, 609-735, Korea

chs_chs@hanmail.net, jmlee@pusan.ac.kr

Abstract

This paper presents a distributed precedence queue
mechanism to resolve unexpected transmission delay of a
lower priority transaction in a CAN based system, which
keeps a fixed priority in data transactions. The mechanism
is implemented in the upper sub-layer of the data link layer
(DLL), which is fully compatible with the original medium
access control layer protocol of CAN. Thus the mechanism
can be implemented dynamically while the data
transactions are going on without any hardware
modification. The CAN protocol was originally developed
to be used in the automotive industry and it was recently
applied for a broader class of automated factories. Even
though CAN is able to satisfy most of real-time
requirements found in automated environments, it is not to
enforce either a fair subdivision of the network bandwidth
among the stations or a satisfactory distribution of the
access delays in message transmissions. The proposed
solution provides a superset of the CAN logical link layer
control, which can coexist with the older CAN
applications. Through the real experiments, effectiveness
of the proposed mechanism is verified.

 1. Introduction

The controller area network protocol (CAN) was
developed to solve complex cable problems and reliability
reduction in automotive [1,2]. This availability was built
network of high reliability applied various industry
environment [3,4,5].

Unlike the IEEE 802.3 standard-access-technique-based
CSMA/CD protocol[6], CAN’s medium-access control
mechanism ensures that when collision occurs a non-
destructive contention-based arbitration is initiated that
stops all of the transmitting stations except the one which
is sending the frame having the highest priority. The
frames that are transmitted are not addressed to a specific
destination, but they are considered as global objects, each
of which is associated with a network-wide unique
identifier. CAN allocates absolutely priority to messages
or objects transmitted in a network using ID. This
mechanism is a good method to manage collisions in
network.

If a network is overloaded, the data transmission quantity
is rapidly decreased to increase data transmission collision.
If this state is continuous, a network may be groggy and
the state of non-transmission may continue over a long

period of time. This paper presents a mechanism that can
create a fair transmission chance and can reduce delay
time [7,8,9] using a distributed precedence queue, and
assigning a precedence queue to relatively low priority and
objects having similar transmission purposes when a
network is overloaded, and which can compensate a
maximum tolerance delay time and to remove
ineffectiveness for an identifier assigned statically into an
overload condition [10].

This precedence queue is not assigned statically but
assigned dynamically According to transmission quantity,
so that the transmission efficiency can be optimized in
network. And each queue can independently assign
transmission sequences of data of a relative priority.

So, this paper can contribute to the mechanism that can
transmit data within a constant time to adjust its priority
dynamically based on an extended CAN protocol when a
low priority object delays transmission because of an
overload in a network.

Identifier is assigned statically in the CAN protocol, the
two requirements of a fair transmission chance and delay
time, can not be satisfied because this solve collision
problem by a static identifier. In this paper it is shown that
the problem can be solved collision by the filtering of
input frames according to the identifier of each object and
by redefining the identifier in the identifier field. By
redefinition of the distributed precedence queue (DPQ) to
use the identifier field of the extended CAN, each object
can be transmitted according to a fair transmission
sequence and can thus satisfy the maximum tolerance
delay time.

2. CAN Analysis

2.1 A basic CAN protocol

The CAN is based on a CSMA/CD channel access
technique. It uses a priority modification mechanism for
transmitted-received messages to resolve collisions in a
network. The CAN protocol adopts a layered architecture
that is based on the OSI reference model, even though it is
not fully OSI compliant, and the architecture is composed
of three layers the factory automation environment.

1. The Application Layer
; Support to access on a Network

2. The Data Link Layer
 ; Connection physical address to the upper-low layer

3. The Physical Layer
; Transmission bit stream to physical medium

This paper resolves the transmission delay time problem

using the data link layer and the only LLC sub-layer
between the MAC (Medium Access Control) and the LLC
(Logical Link Control) of the data link layer.

Fig 1. CAN arbitration phase

 3. A Distributed Precedence Queue Mechanism (DPQ)

The CAN implicitly assigns to each object exchanged in
the network a priority that corresponds to the identifier of
the object itself. Even though this mechanism enforces a
deterministic arbitration that is able to resolve any conflict
that occurs when several nodes start transmitting at the
same time, it is clearly unfair. If many nodes are connected
in the network, nodes that are of low priority rank can
continuously lose a transmission opportunity. That is, if
high priority objects transmit continuously, finally a low
priority object can miss an important message which is
relatively unimportant compared to that of a high priority
object.
 Accordingly, a mechanism that uses a relative priority
according to the consideration of low priority nodes is
necessary although the CAN implicitly assigns a priority.
Fair behavior, which for example enforces a round-robin
policy among different stations, has to be guaranteed to all
the objects exchanged at a given priority level.

In this paper, it is shown that this kind of behavior can be
obtained by slightly modifying the frame acceptance
filtering function of the LLC sub-layer. In particular, only
the significance of the identifier field in the transmitted
frame has to be modified in some way. The resulting
arbitration mechanism is able to enforce a round-robin
policy among the stations that want to transmit a message
on the bus, and provides two levels of priority for the
frame transmission services. Little or nothing has to be
changed at the MAC level; and in this way it is possible to
reuse the same electronics components developed for the
implementation of the standard CAN protocol.

3.1 DPQ principle

The basic idea of this CAN fairness control mechanism
that is to insert into a global queue all of the nodes that
want to transmit over the shared medium. For Node C, of
which transmission is continuously delayed as shown in
Fig 1, a queue is created to transmit Node C and the other
nodes that transmit with C. So, several queues can be
partially made in this research, two queue were used.

a b c

A

B

C

D

E

F

G

C

D

E

F

G

A

B

D

E

F

G

C

d

Fig 2. Generation of a precedence queue in
DPQ mechanism

This distributed precedence queue protocol provides the

opportunity to create precedence queues for all nodes in a
network. And, in the case that several precedence queues
exist, each precedence queue assigned a priority so that
they can be implemented independently.

The DPQ mode ID, which is stored in the 11 bit standard
ID field shown in the Fig 4, indicates the precedence
queue order of each node. Whenever a node carries out a
transmission, it moves to the end of the queue, thus
lowering its precedence to the minimum. All of the nodes
following the transmitting node advance by one position in
the queue, occupying the space that has just been created.
Using this round-robin policy, collisions among messages
are avoided.

The queue is not stored in some specific location. Instead,
it is distributed among all the nodes in the network. Each
node is responsible for storing and updating. That is, if the
maximum permission delay time is reached, it creates a
precedence queue, and then it has to dynamically change
priorities to transmit preferentially with other nodes. And a
precedence queue has to be dissolved when is completed
an urgent task.
 We suppose a network that is composed of Nodes A to G
as shown in Fig 2. If Node C builds up a queue, the ID that
is entered into the data frame queue can transmit and
designate to 7 by lower 7 byte. At this time, it will be
designated precedence priority to higher byte. Then, each
node filters to enter itself into the queue, and it assigns its
queue. After Node C transmits a message, it will go to the
last position in the queue. And the other nodes will move
up one position by order. And the remaining nodes that to
be transmitted are designated using the upper 1 byte as
shown in Fig 3; their queues will be dissolved or
maintained using the upper 1 byte, as shown the Fig 3 after
all transmissions are completed.

D LC

8 byte (data field)

C R C
Q ueue
entry

(1 byte)

Precedence priority (7 byte)

Fig 3. Structure of a data field for DPQ

3.2 DPQ Realization Method

The DPQ mechanism can be implemented without any

modifications to the basic format of CAN frames. It uses
an identifier field to designate the priority queue. Because
the length of the conventional identifier field defined in the
CAN standard is too small, the CAN extended format can
be adopted.

11bits
base ID

S
S
R

I
D
E

18 bit ID EXT
R
T
R

r
0

r
1 D LC

S
O
F

Fig 4. Format of the header of extended CAN frames

The DPQ uses the first 11 bits of the identifier field for its
control information, whereas the remaining lower order 18
bits (ID ext.) are used to dynamically store the effective
identifier of the an exchanged object (EID).

S
O
F

t
0

t
1 P 8 bit PL

S
S
R

I
D
E

18 bit EID
R
T
R

r
0

r
1

D LC

Fig 5. Format of the header of DPQ frames

The first two bits (t0, t1) must be set at the logical value
of zero as shown in Fig 5. Then, the protocol is divided by
a standard CAN communication and DPQ mechanism. So,
DPQ always has a higher priority than a CAN mechanism,
and they can exist in this same space.

The priority bit P specifies whether the frame has to be
transmitted as a high priority frame (P=0) or as a low
priority frame (p=1). When T1 and P are used, the priority
can be assigned a maximum 4 queues.

The next 8 bits represent the precedence level of the
frame. Namely, these 8 bits show the transmission queue
order. The DPQ, which was used in this research, uses t0,
t1, and then distinguishes the standard CAN mechanism,
and sets each queue using P, and concludes the precedence
in the queue using 8 bits.

4. System Architecture and Experiments

To verify the usefulness of the mechanism presented in
this paper, actuator ECU that are used in throttle-body
controllers of vehicles and portable inspection equipment
ECU that can set sensor limit values and can diagnosis
vehicle problems, established the basic nodes.

Fig 6. Total system organization

The total system consisted of additional virtual ECU of
10 nodes used in many parts of the vehicles as inhalation
fuel ECU, lighting ECU, side-mirror ECU, and exhaust
port ECU.

Each node used TMS320LF2407 with the CAN module
and PCA82C251 with the CAN transceiver. Each node
was set to a 250 Kbps transmission time.

The transmission period for the total 10 nodes was set to
two states, 10ms and 2ms. When the transmission period
was 10 ms, Collisions did not often occur. But when it was
2 ms, collisions often occurred. The transmission message
priority was arranged as Node 1 (portable ECU) and node
2 (main ECU) for each transmission period and this
priority decreased gradually. When the transmission period
was 2 ms, Node 8,9,10 suffered a long transmission delay
because of message collision on the bus, and the DPQ
mode was applied to resolve this problem at Node 8,9,10.

Table 1. Identification Definition (ID)

n o d e s ta n d a rd C A N D P Q

P O R T A B L E 11 1 0000 0001 11 1 0000 0001

M A IN E C U 11 1 0000 0010 11 1 0000 0010

3 11 1 0000 0011 11 1 0000 0011

4 11 1 0000 0100 11 1 0000 0100

5 11 1 0000 0101 11 1 0000 0101

6 11 1 0000 0110 11 1 0000 0110

7 11 1 0000 0111 11 1 0000 0111

8 11 1 0000 1000 00 1 1111 1101

9 11 1 0000 1001 00 1 1111 1110

10 11 1 0000 1010 00 1 1111 1111

5. Result and Analysis

Fig 7 shows the transmission delay time of the Node 1.

From 1 to 50, the X axis values show the transmission
delay time when the transmission period was 10 ms. And
from 51 to 100, the values show the transmission delay
time when the transmission period was 2 ms. And from
101 to 150, the values show the transmission delay time
when the DPQ mode was applied.

0

500

1000

1500

2000

2500

3000

1 14 27 40 53 66 79 92 105 118 131 144

n u m b e r

u
s
e
c

Fig 7. Transmission delay time of node 1

From the Fig 7 results, we know that Node 1 increased

the delay time more when the transmission period was 2
ms than when the transmission period was 10 ms. And

additional delay time occurred for Node 8, 9 and 10 in
DPQ mode.

As shown in Fig 8, in the case of Node 8, the state which
a transmission period is 2ms, a longer delay time occurred
for low priority nodes than other nodes. To overcome this
problem, we can verify that a transmission chance was
guaranteed and the delay time was advanced outstandingly,
when the DPQ mode was applied instead of changing the
priority permanently, as shown in Fig 9.

In case of experiment 2 shown in the Fig 11, the graph
shows a transmission delay time. From 1 to 50, the X axis
values show a transmission delay time for the highest
priority Node 1 when the transmission period was 2 ms.
And from 51 to 100, the values are shown for that when
the node number was 10. From 101 to 150, the values are
shown for when the DPQ mode was applied.

0

500

1000

1500

2000

2500

3000

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

n u m b e r

u
s
e
c

Fig 8. Transmission delay time of node 8

0

200

400

600

800

1000

1200

1400

u
s
e
c

1 2 3 4 5 6 7 8 9 10

개체

Fig 9. Average transmission delay time of DPQ mode

6. Conclusion

This study applied the DPQ mechanism to correct the
ineffectiveness occurring according to a fixed priority
mechanism and to arbitrate collisions in a network using a
standard CAN protocol. The proposed mechanism
established the availability through an experiment of two
different states.

The experiment showed that a transmission of a low

priority node does not exceed the maximum tolerance
delay time using the DPQ mode, despite frequently
occurring collisions in transmission and the rapid
transmission of each node.

But, in the case of the DPQ mode being applied to high
priority object, the effectiveness was lower than that of a
standard CAN application. In future research, algorithms
will be developed to efficiently manage the time delay of
each object, applying the DPQ mechanism dynamically.
And it will be shown how these algorithms can be applied
conveniently for compatibility with other CAN
applications.

Acknowledgments
This work was supported (in part) by the Ministry of

Science & Technology, Korea, under the Region Research
Center University (RRCU).

References
[1] International Standard Organization, “Road - vehicles

Interchange of digital information - Controller area
network for high-speed communication” ISO 11898,
November, 1993.

[2] International Standard Organization, “Road - vehicles
Interchange of digital information - Controller area
network for high-speed communication” Draft
Amendment, ISO 11898:1993/DAM 1, February, 1994.

[3] CAN in AUTOMATION International Users and
Manufacturers Group e. V. “CAN Application Layer
(CAL)”, CiA/DS201-CiA/DS205, CiA/DS207.

[4] Jin W. Park, Dong K. No, Jae H. Park, Hwa R. Hur,
Jang M. Lee, “Implementation of a Mobile Robot with
Distributed Control Structure using CAN” Autumn
Combination Conference . pp 251-255.1999.

[5] Sung S. Hong, “A distributed real time control
systems,” CASE Technical Special: Real-Time Control
System (3), ICASE, 1, 1998.

[6] IEEE Standards for Local Area Networks, “Carrier
Sense Multiple Access with Collision Detection
(CSMA/CD) Access Method and Physical Layer
Specifications”, ANSI/IEEE Std 802.3- ISO/DIS 8802/3,
1985.

[7] K. Tindell and A. Burns and A. Wellings, “Calculating
Controller Area Network (CAN) Message Response
Times”, in Proc. 1994 IFAC Workshop on Distributed
Computer Control Systems, Toledo, Spain, September,
1994.

[8] K. Tindell and A. Burns, “Guaranteeing Message
Latencies on Control Area Network (CAN)”, in Proc. 1
st International CAN Conference, Mainz, Germany,
September, 1994.

[9] K. Tendell, A. Burns and A. Wellings, “Analysis of
Hard Real-Time Communications”, Report YCS 222,
Department of Computer Science, University of York ,
to appear in Real-Time Systems, 1994.

[10] “SDS-Smart distributed system specification”
 Hineysell Inc., Micro Switch Division, Phoenix, AZ, GS

052-103/104/1-5/106/107/108.

