
A View-Based Navigation System for Autonomous Robots

Chandima Pathirana Keigo Watanabe, Kiyotaka Izumi
Dept. of Advanced Systems Control Eng. Dept. of Advanced Systems Control Eng.

Graduate School of Science and Eng. Graduate School of Science and Eng.
Saga University Saga University

1-Honjomachi, Saga 840-8502, Japan 1-Honjomachi, Saga 840-8502, Japan

Abstract
We present a purely vision-based scheme for learn-

ing a topological representation of an open environ-
ment. The system represents selected places by local
views of the surrounding scene, and finds traversable
paths between them. The set of recorded views and
their connections are combined into a graph model
of the environment. To navigate between views con-
nected in the graph, we employ a homing strategy
inspired by findings of insect ethology. In robot ex-
periments, complex visual exploration and navigation
tasks can thus be performed without using metric in-
formation.

1 Introduction

To survive in unpredictable and sometimes hostile
environments animals have developed powerful strate-
gies to find back to their shelter or to a previously vis-
ited food source. Successful navigation behaviour can
already be achieved using simple reactive mechanisms
such as association of landmarks with movements [1]
or tracking of environmental features [2]. However, for
complex navigation tasks extending beyond the cur-
rent sensory horizon, some form of spatial representa-
tion is necessary. Higher vertebrates appear to con-
struct representations—sometimes referred to as cog-
nitive maps—which encode spatial relations between
relevant locations in their environment [3, 4].

Under certain conditions, such maps can be ac-
quired visually without any metric information. Hu-
mans, for instance, are able to navigate in unknown
environments after presentation of sequences of con-
nected views [5]. This has led to the concept of a view
graph as a minimum representation required to ex-
plain experimentally observed navigation competences
[7]. A view graph is defined as a topological represen-
tation consisting of local views and their spatial re-
lations. Depending on the task, these relations can

be, e.g., movement decisions connecting the views, or
mere adjacencies.

Motivated by the findings of vertebrate ethology,
researchers have started to investigate topological rep-
resentations for robot navigation. These systems rely
primarily on local sonar patterns for the identification
of places, in combination with metric knowledge de-
rived from compasses or wheel encoders. Bachelder
and Waxman [8] have reported results on a vision-
based topological system which uses a neural con-
trol architecture and object recognition techniques for
landmark detection. In their current implementation,
however, the system has to rely on artificially illumi-
nated landmarks and a pre-programmed path during
exploration of the environment. For maze-like envi-
ronments, Schölkopf and Mallot [7] have shown that
learning a graph of views and movement decisions is
sufficient to generate various forms of navigation be-
havior known from rodents. The scheme has subse-
quently been implemented in a mobile robot [7].

The purpose of the present study is to extend the
view graph approach from the mazes of [7] to open en-
vironments. In doing so, we present a navigation sys-
tem that uses purely topological information based on
visual input. By focusing on just one type of informa-
tion we want to make the contribution of topological
knowledge explicit.

2 Learning View Graphs

2.1 Discrete Representation of Continu-
ous Space

In view-based navigation tasks, visual information
is used to guide an agent through space. The reason
why this is feasible at all, is the fact that there is a
continuous mapping between position space (x- and
y-coordinates, possibly supplemented by gaze direc-
tions) and the space of all possible views: for each spa-
tial position, a certain view is perceived, and this view

changes continuously as the observer moves around in
space. Unfortunately, this mapping can be singular,
because identical views can occur at different spatial
locations, i.e., there is no guarantee for the existence
of a global coordinate system on the manifold of all
possible views. In principle, this problem can be dealt
with using context information: In points with identi-
cal views, we can use views from nearby spatial posi-
tions to disambiguate between them.

It is sufficient to store views which allow the de-
scription of relevant paths. This leads to a less de-
tailed representation of the view manifold, namely by
a graph consisting of representative views and connec-
tions between them.

Since open environments do not impose a structure
on the view graph, we have to select a set of views
which are representative for the manifold (in the fol-
lowing referred to as snapshots), and to find connec-
tions between them. Since the connecting paths be-
tween the snapshots are not explicitly coded in the
view graph, we have to provide a homing method
which allows us to find connected views from a given
start view.

In the following sections, we introduce a system
that is able to solve these tasks. The vertices of the
acquired view graph are panoramic views of the en-
vironment, and their edges are connections between
views that can be traversed using a visual homing pro-
cedure. This homing procedure allows the system to
approach a location from any direction such that the
graph edges denote mere adjacency relations without
any directional labelling. The resulting view graph
does not contain any explicit metric information.

2.2 A Minimal System for Learning a
View Graph

The overall architecture of the system is shown in
Fig. 1. Here, we discuss the basic building blocks, the
details are described in the following sections.

2.2.1 View Classifier

As we mentioned above, a crucial component of any
graph learning scheme is the selection of vertices. The
graph vertices have to be distinguishable, because oth-
erwise the representation could not be used for finding
a specific location. Since we confine our system to use
only visual information, we must guarantee that the
recorded views are sufficiently distinct. This can be
performed by a classifier which detects whether the
incoming views can be distinguished from the already
stored vertices of the view graph. If this condition is

Start new graph Record non-edge

Move in exploration direction

Current view
sufficiently

distinct?

Current view
similar to known

vertices?

Take snapshots, connect
it to predecessor

Home to vertex

Vertex
found?

View classifier

No

No

YesYes

Route learning

Choose next
exploration direction

Connect it to last
vertex

Yes

No

Exploration Edge verification

Figure 1: Block diagram of the graph learning algo-
rithm

fulfilled, the system takes a new snapshot and adds it
to the graph. The classifier is described in Section 2.3.

2.2.2 Route Learning

In this system, a new snapshot is automatically
connected to the previously recorded vertex of the
view graph. Thus, the system records chains of snap-
shots, or routes. These routes can be used to find a
way back to the start position by homing to each inter-
mediate snapshot in inverted order. We describe the
homing procedure in Section 2.4. The area from which
a specific snapshot can be reached by the homing pro-
cedure is called its catchment area. The view classifier
has to make sure that every snapshot can be reached
from its neighbour, i.e., all vertices of the view graph
have to be in the catchment areas of their adjacent
vertices.

2.2.3 Choice of Exploration Direction

When the system has taken a new snapshot, a new
exploration direction must be chosen. This choice pri-
marily affects the exploration strategy of this system,
because it determines how thoroughly an area is ex-
plored and how fast the explored area grows. In Sec-

tion 2.5, we describe several local exploration strate-
gies used in this system.

2.2.4 Edge Verification

The route learning procedure described above has no
way of forming new edges to previously visited views,
i.e., the resulting graphs will be mere chains. By
adding the following behaviour we can obtain nontriv-
ial graphs: during exploration, the system constantly
checks whether the current view becomes similar to the
already recorded snapshots. This again is a view clas-
sification task which can be solved by the same classi-
fier as used for the selection of the snapshots (see Sec-
tion 2.3). In a second step, the system checks whether
the detected snapshot is not yet connected to the ver-
tex from which the current exploration step started.
Whenever these conditions hold, the system tries to
home to the snapshot. If successful, an edge connect-
ing the two vertices is included, and the exploration
continues from the detected snapshot. In cases where
the robot gets lost or bumps into obstacles, the sys-
tem reports a “non-edge” between both vertices thus
preventing the failed action from being repeated. Be-
fore starting to home, the verification procedure al-
ways checks whether a “non-edge” for this action has
already been recorded. After a failed verification, we
start a newgraph, which will typically get connected
to the old one in due course by the edge verification
procedure.

If an already connected view is encountered during
an exploration step, the system homes to it as well(not
shown in Fig. 1). This procedure does not produce
additional knowledge, but has the effect that edges
intersecting previously stored edges are less likely to
be recorded.

2.2.5 Arbitration and Obstacle Avoidance

Since the focus of this work is on navigation, any so-
phisticated obstacle avoidance systems are not neces-
sarily employed into this system. During exploration,
kind of simple sensors like infrared sensors can be used
for the presence of nearby objects. If obstacles were
detected at distances larger than 1 cm, the robot is
made to turn away without slowing down. Smaller
distances can be interpreted as collisions causing the
robot to back up and turn away from the obstacle.
Both behaviors and the graph learning system of Fig. 1
are combined into a subsumption architecture where
the collision-induced escape behavior had highest, the
graph learning procedure lowest priority.

The robot is not allowed to take snapshots as long
as the obstacle avoidance system is active. The result-
ing graph structure tends to concentrate in the open
space between obstacles. This feature makes the nav-
igation system more effective, because the visual in-
put changes very rapidly near objects. Exploration of
these areas would require a large number of snapshots
which, in complex natural environments, would ulti-
mately lead to a fractal graph structure near objects.

2.3 View Classifier

Ideally, the set of snapshots taken to represent the
view manifold should satisfy three criteria: first, the
views should be distinguishable. In purely graph-
based maps, this is the only way to guarantee that
specific vertices can be navigated to. This can be
achieved by incorporating only distinct views into the
graph. Second, a large proportion of the view manifold
should be covered with a small number of vertices to
keep processing requirements small. Third, the spatial
distance of neighbouring views should be small enough
to allow reliable homing between them.

As we confine this system to use only visual input,
the selection of the snapshots must be based on the
current view and the stored snapshots. The above
criteria can be satisfied by measuring the degree of
similarity between views: dissimilar views are distin-
guishable by definition while being distant on the view
manifold, and similar views often are spatially close.

Clearly, a threshold of classifier can also be used
to detect whether the current view becomes similar
to one of the already recorded snapshots. If the image
distance to a snapshot falls below the threshold, the ro-
bot starts its edge verification procedure (as stated in
Section 2.2) and tries to home to the snapshot. In this
system, we use the same classifier for both tasks. A
suitable threshold can be determined experimentally.

2.4 Navigating Between Places:
View-Based Homing

In order to travel between the vertices of the view-
graph, we need a visual homing method. Since the
location of a vertex is only encoded in the recorded
view, we have to deduce the driving direction from a
comparison of the current view to the goal view. After
the robot has moved away from the goal, the images of
the surrounding landmarks in the current view are dis-
placed from their former image positions in the goal
view. If the robot moves so as to reduce these dis-
placements, it will finally find back to the goal where
current view and snapshot match. The displacement

field has a focus of contraction in the goal direction.
Driving into the direction of this focus most quickly
reduces the image displacements.

A number of experiments have shown that inver-
tebrates such as bees or ants are able to pinpoint a
location defined by an array of nearby landmarks. Ap-
parently, these insects search for their goal at places
where the retinal image forms the best match to a
memorized snapshot. Cartwright and Collett [9] have
put forward the hypothesis that bees might be able to
actively extract the goal direction by a homing mech-
anism as described above.

2.5 Local Exploration Strategies for
Graph Learning

The exploration strategies used by this system have
been motivated by the principle of maximizing knowl-
edge gain [6]. As we have not formalized any notion
of knowledge, this principle was used as a qualitative
guideline. In this context, knowledge gain is possi-
ble, for instance, through the recording of new edges
and new snapshots. In the following, we describe sev-
eral exploration strategies, which concern primarily
the choice of the next direction to explore after a snap-
shot has been taken, or after an existing vertex has
been reached (as discussed in Section 2.2).

2.5.1 Exploration Direction During Route
Learning

The simplest conceivable rule is to choose a random di-
rection and then to go straight until the next snapshot
is taken. The resulting Brownian motion pattern has
the advantage that eventually every accessible point of
the environment will be explored without the danger
that the exploring agent is caught in an infinite loop.
Good results can also be achieved if one uses a fixed
turning angle. Using smaller angles, distant areas are
reached faster, whereas angles closer to lead to a more
thorough exploration of the local neighbourhood.

2.5.2 Exploration of the Largest Open Angle

This navigation scheme is designed such that all ver-
tices of the view graph remain in the catchment ar-
eas of their respective neighbours. This property can
be used to choose the next exploration direction, if a
vertex has already more than one edge: the system
determines the directions to all neighbouring vertices
using the homing procedure, and directs the next ex-
ploration step to the largest open angle between them.

Alternatively, one could use information about neigh-
bouring vertices, such as their connectivity or similar-
ity. For example, exploring areas where neighbouring
views are connected to each other would be more likely
to lead to possibly undesired edge intersections.

3 Summary

This paper has presented the view graph learning
method that can be used for view based navigation
system of autonomous robots. This method is ex-
pected to incorporate into a real robotic system which
is expected to work only on visual inputs.

References

[1] R. Wehner, B. Michel, and P. Antonsen, “Visual
navigation in insects: Coupling of egocentric and
geocentric information,” J. Exp. Biol., vol. 199, pp.
129–140, 1996.

[2] T. S. Collett, “Insect navigation en route to the
goal: Multiple strategies for the use of landmarks,”
J. Exp. Biol., vol. 199, pp. 227–235, 1996.

[3] J. O’Keefe and L. Nadel, The Hippocampus as a
Cognitive Map, Clarendon Press: Oxford, 1978.

[4] R. Gallistel, The Organization of Learning, MIT
Press: Cambridge, MA, 1990.

[5] M. J . O’Neill, “Evaluation of a conceptual model
of architectural legibility,” Environment and Be-
havior, vol. 23, pp. 259–284, 1991.

[6] S. Thrun, “Exploration in active learning,” in The
Handbook of Brain Theory and Neural Networks,
M.A.Arbib(Ed.), MIT Press, pp. 381–384, 1995.

[7] B. Schölkopf and H. A. Mallot, “View-based cog-
nitive mapping and path planning,” Adaptive Be-
havior, vol. 3, pp. 311–348, 1995.

[8] I. A. Bachelder and A. M. Waxman, “A view-based
neurocomputational system for relational map-
making and navigation in visual environments,”
Robotics and Autonomous Systems, vol. 16, pp.
267–289, 1995.

[9] B. A. Cartwright and T. S. Collett, “Landmark
learning in bees,” J. Comp. Physiol. A, vol. 151,
pp. 521–543, 1983.

