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Abstract

A variety of strategies are needed to maintain coop-
erative behavior. Such strategy diversity in replication
arises from various circumstances; for example, muta-
tion in replication, noise, mistakes and moods. In this
paper, we deal with the iterated prisoner’s dilemma
game, which has been widely used to study the evolu-
tion of cooperation. We approach the question of how
cooperation evolves from the standpoint of dynami-
cal systems and also analyze the evolution in terms
of optimal response. Through these analyses, we have
confirmed that strategy variation is important for the
evolution of cooperation. In addition, we show that
this approach is more useful than previous approaches
because use of dynamical systems theory allows us to
express a transient process dynamically.
Keywords: evolutionary game dynamics, replicator
equation, cooperative behavior, iterated prisoner’s
dilemma, bifurcation analysis, optimal response.

1 Introduction

1.1 Evolutionary game theory

An aim of sociology and economics is to understand
how cooperative behavior is maintained. It is impor-
tant for research on behavior to look at the sustainabil-
ity of such phenomena as well as their initial causes.

For this purpose, Maynard Smith applied game the-
ory to ecological situations[1], which is known as evo-
lutionary game theory. The main concept of this ap-
proach is that an evolutionarily stable strategy can be
achieved. This concept of stability enables us to dis-
cuss sustainability.

Evolutionary game theory is now widely applied to
many fields such as behavioral biology, ecology and
economics.

1.2 Need for dynamic analysis

Most evolutionary researches on cooperation have
emphasized an invasion condition of cooperative be-
havior in a population characterized by selfish behav-
ior. To make up for the insufficiency of this approach,
we need mathematical tools for analyzing dynamic
processes as well as static states. Therefore, we have
used nonlinear dynamical systems analysis to analyze
the global behavior of evolutionary dynamics in the
phase space of a strategy set.

1.3 Analysis of mutation in the evolution

Past researches have not accounted for all proper-
ties of evolution. Our goal is thus to consider situ-
ations containing various evolutionary factors, espe-
cially effects of mutation.

Through consideration of mutation, we examine ef-
fects of diversity on the evolution of cooperation. For
this analysis, we emphasize the importance of dynam-
ical systems, especially through bifurcation analysis.

2 Theory and methods

First, we introduce the game used to model the sit-
uations we consider, namely the prisoner’s dilemma
game, and prepare a strategy set for playing the game.
After that, we introduce tools for the analysis. We
describe the replicator equation and the form of mu-
tation.



2.1 The Iterated Prisoner’s Dilemma
game

The iterated prisoner’s dilemma (IPD)1 is the most
widely used model for the evolution of cooperation.
Axelrod held a competition to study IPD strategy
through a computer simulation [2]. This competition
showed that a “tit-for-tat” (TFT) strategy was the
most advantageous. A player using this strategy co-
operates in the first interaction and then in subsequent
interactions repeats (imitates) what the opponent did
in the immediately preceding interaction.

On the other hand, the evolutionarily stable strat-
egy (ESS) [1] in a finite IPD is the “always defect”
(AllD) strategy. A violation of AllD, which is equiva-
lent to destabilization of the ESS, is necessary for the
evolution of cooperation. The evolution of coopera-
tion in such cases can arise from various conditions
(for example, groupings or spatial structures).

2.2 Strategy set

We must consider a class of various types of strategy
ranging from selfish behavior to cooperative behavior.
Thus, we prepared a strategy set (Table 1) like those
used elsewhere [3, 4, 5].

strategy explanation
TFT Tit for tat
E1 Tit for tat and defect in the last interaction
E2 Tit for tat and defect in last two interactions
...

...
Ek AllD (The number of interactions is k)

Table 1: Strategy set

TFT represents cooperative behavior (not being the
first to defect) and AllD represents selfish behavior.
This strategy set is filled from cooperation to defec-
tion.

1A payoff matrix for the prisoner’s dilemma game (PD) is
shown below.

Opponent
Cooperation Defection

Cooperation R S
Self

Defection T P

S < P < R < T and T + S < 2R. This situation leads to the
self’s conflict and dilemma: if each of two players chooses the
behavior maximizing self payoff, it brings about the situation
minimizing the sum of the payoffs. Through iteration of the
PD, the tendency towards cooperation increases.

2.3 Evolutionary game dynamics: the
replicator equation

The fundamental law of evolutionary game theory
is described by the replicator equation [6], and the
evolutionary path can be understood as the dynamics
on the phase space spanned by the frequency of each
strategy.

We consider a replicator map of the following form:

xi(t + 1) = Fi(~x(t)) =
xi(t)wi(~x(t))∑N

j=1 xj(t)wj(~x(t))
, (1)

where the variable xi denotes the frequency of strategy
i, which fitness, wi(~x), is a function of the distribution
of the population given by the vector ~x = (x1, · · · , xn).
The denominator,

∑N
j=1 xj(t)wj(~x(t)), ensures that∑N

j=1 xj(t) = 1. This map describes frequency-
dependent selection. The evolutionary game theory
assumes that Darwinian fitness is determined by the
payoff matrix of a game (e.g., the IPD).

If the number of iterations of an IPD is finite and
fixed2, this map is deterministic and has no stochas-
ticity.

We carried out numerical simulations based on this
map. Similar analyses of population dynamics based
on game theory have been done in [7].

2.4 Mutation

The elements of the evolution are as follows:
• Heredity
• Selection
• Mutation.

The replicator system mentioned above does not allow
mutation, then we introduce the effect of mutation.

In this work, we discuss the replicator-mutator map
of the following form [8, 9, 10]:

xi(t + 1) = Fi(~x(t)) =

∑N
j=1 xj(t)wj(~x(t))qji∑N

j=1 xj(t)wj(~x(t))
, (2)

where each setting is the same as for the replicator
map (1). The probability that replication of strategy j
gives rise to strategy i is given by qji. These quantities
define the mutation matrix (a Markov matrix). This
map describes both frequency-dependent selection and

2As in previous studies [3, 4, 5].



mutation.

Here, we consider a mutation matrix (Markov ma-
trix) with uniform mutation3 of the following form:

(qji) =
{

1− (N − 1)ε (j = i)
ε (j 6= i) .

(3)

We consider the population dynamics of this model
and analyze the stability and bifurcations of this sys-
tem.

3 Results

In this section, we analyze the effects of mutation.
First, we show time series obtained by numerical sim-
ulation with several mutation rates. After that, we
show a bifurcation diagram and discuss its bifurcation
structure. The number of strategies is N and the num-
ber of iterations of the IPD is k (N=k+1).

3.1 No mutation: the replicator equation

Previous studies [3, 4, 5] considered the case of no
mutation. No mutation is equivalent to the muta-
tion matrix being an identity matrix, namely ε = 0
in Equation (3).

A numerical simulation result of the equation is
shown in Figure 1.

The orbit in the simulation resembles a heteroclinic
cycle, and approaches each of the corners on the k-
dimensional simplex.

The sojourn time in each strategy exponentially in-
creases. Various researchers have discussed the pos-
sibility that because the evolution of non-cooperative
strategies cause the waste of much time, cooperation
can evolve.

3We can also consider other types of formalization of the
mutation matrix. A simple model is

(qji) =

{
1− 2ε (j = i) (1− ε if j = 1 or N)

ε (j = i− 1, i + 1) .

A strategy easily mutates into a similar strategy on the pheno-
type, but cannot mutate into a radically different strategy. The
distance on the phenotype is strictly determined by the distance
on the genotype. In this model, mutation will similarly affect
the evolution of cooperation, but various dynamics would not
be able to arise.

3.2 Slight mutation

Next, we investigated effects of mutation.

While the orbit property is the same as in the case of
no mutation, the population dynamics are drastically
changed even by a slight mutation.

A numerical simulation result of evolutionary dy-
namics with a slight mutation is shown in Figure 2.

If there is a slight mutation, the sojourn time in
each strategy except the final one (AllD) is constant.
Therefore, the evolution time of non-cooperative be-
havior is linear and selfish behavior evolves in actual
time. Since the models used in previous studies cannot
tolerate even a small amount of mutation, we consider
them insufficient for interpreting the evolution of co-
operation.

3.3 Greater mutation

Since there are reasons other than those considered
in previous studies that can account for the evolution
of cooperation, we look at the conditions affecting the
evolution.

One factor that helps explain the evolution of co-
operation is effective mutation.

We make the variation of strategy wider. In addi-
tion, the population dynamics change drastically de-
pending on the mutation rate. In this instance, more-
over, the orbit property differs from those in the cases
of no mutation and a slight mutation.

A numerical simulation result of the evolutionary
dynamics with a fairly weak mutation is shown in Fig-
ure 3.

For any initial condition, the dynamics fall into this
quasi-periodic orbit. Thus, non-cooperative behav-
ior cannot evolve. The result of evolution is periodic
change of behavior.

3.4 Bifurcation analysis

We measure the level of cooperation in the popula-
tion as a function of the mutation parameter ε. This is
the level of cooperation after sufficient time has passed
and the influence of the initial conditions is negligible.
The bifurcation diagram is shown in Figure 4.



A mutation threshold exists and the dynamics of
this system drastically change with changing the value
of ε. The period of the limit cycle also continuously
changes.

This system contains a saddle-node bifurcation on
an invariant circle and a Neimark-Sacker bifurcation
[11].

4 Discussion

We assert that mutation may play an important
role in the evolution of cooperation, because popula-
tion dynamics are drastically changed by mutation in
replication. Here, we discuss the bifurcation at this
change.

4.1 Comparison with recent research

Recent research based on dynamic programming
suggested similar outcomes [12]. Therefore, we com-
pare a dynamical systems technique to an analysis of
optimal response and discuss the similarities and dif-
ferences between the former research and our own.

The earlier research on the evolution of cooperation
through analysis of optimal response has two limita-
tions. First, a limited situation was assumed where
most of the population adopted one strategy and other
strategies were distributed among the population ac-
cording to a distribution of a given variance. If a state
is a mixture of strategies, it is difficult to analyze. Sec-
ond, the response could only be examined for certain
static situations, and dynamic processes could not be
accommodated. McNamara et al. [12] demonstrated
the importance of mutation (variation) from this view-
point.

To determine whether cooperative behavior is sus-
tainable, we need to describe the time evolution of
behavior. An approach based on a dynamical system
allows the expression of various states like mixtures
of strategies and transient processes. The resulting
abundance of information makes this a more fruitful
approach. This is important for studying the evolu-
tion of cooperation [13].

The advantage of the approach with a dynamical
system is that it allows us to examine not only the
direction of evolution but also the time evolution of the
frequencies of the strategies and transient processes.

This is what makes the dynamical system approach so
effective.

4.2 Consideration as game theory

In this paper, we have dealt with a finitely iterated
prisoner ’s dilemma game; that is, we have discussed
the situation where the period of interaction is fixed
and known. This is a difficult problem in the sense
that it is difficult for cooperative behavior to evolve.

In biological and economic situations, the period of
interaction may be known to everyone. In this case,
cooperative behavior is maintained. Nevertheless, it is
difficult for cooperation to evolve theoretically because
of backward induction reasoning, and few theoretical
approaches have allowed the evolution of cooperation.

When the period of interaction is fixed and known,
previous studies have shown that it is difficult for co-
operation to evolve because of backward induction
reasoning [3, 4, 5]. Backward induction is powerful
premise, leading some to consider theoretical research
on the evolution of cooperation to be impossible. The
few studies that supported the evolution of coopera-
tion [3, 4, 5, 14] used models that did not contain all
properties of evolution. Therefore, we wanted to con-
sider situations involving various evolutionary factors,
especially the effect of mutation.

Our goal is to bridge the gap between the theo-
retical and empirical researches. In this paper, we
sought to do this by incorporating the role of muta-
tion. By considering mutation, we found a remarkable
phenomenon: mutation can promote the evolution of
cooperation. This phenomenon arises from a bifurca-
tion of the equation solution.

5 Conclusion

We have examined the factors affecting the evolu-
tion of cooperation in a finitely IPD. Players cooper-
ate in a situation where the interaction term is finite
and known. This evolution is supported by mutation.
Our research indicates that mutation plays an impor-
tant role in the evolution of cooperation. Moreover,
through a comparison with another approach, we have
confirmed the effectiveness of applying dynamical sys-
tems theory to the evolution of behavior.
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Figure 1: Population dynamics without mutation (k
= 10, ε = 0). The horizontal axis is time (generation)
and the vertical axis is the population frequency of
each strategy.
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Figure 2: Population dynamics with a slight mutation
(k = 10, ε = 1.0 × 10−6). The horizontal axis is time
(generation) and the vertical axis is the population
frequency of each strategy.
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Figure 3: Population dynamics with a weak mutation
(k = 10, ε = 3.5 × 10−4). The horizontal axis is time
(generation) and the vertical axis is the population
frequency of each strategy.

Figure 4: Bifurcation diagram: The horizontal axis is
the mutation rate (the bifurcation parameter) and the
vertical axis is the frequency of cooperative behavior
after sufficient time has passed.


