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Abstract

Two major principles for silicon neuron im-
plementations are the phenomenological and the
conductance-based ones. The former reproduces some
properties perceived by the designers and does not
claim mechanism consistency. The latter reproduces
the dynamics of the ion channels on the nerve mem-
branes. It makes the silicon neurons more similar to
biological ones, but the implementations tend to be
complicated because it attempts to replicate the de-
tailed dynamics of the biological components. In the
previous work [1], we proposed a new principle based
upon phase plane analyses. It reproduces the mathe-
matical structures of biological neurons, which makes
the silicon neurons simple and faithful. In this paper,
we show how Class 1 and Class 2 nerve membranes are
realized by parameter tuning based on simple phase
plane analyses with an illustrative MOSFET-based
nerve membrane.

1 Introduction

Neural systems process massive and various incom-
ing information flexibly, appropriately, and in real
time. One of the purposes of studies on silicon neu-
rons is to implement artificial systems that inherit
these exquisite properties, and another is to produce
some devices to interface between electrical circuits
and living nerve systems [2]. There are two ma-
jor types of silicon neuron design principles. One
is the phenomenological implementation, which aims
to reproduces some phenomena of biological neurons.
Integrate-and-fire silicon neurons are good examples
[3], which reproduce the integration property of spatio-
temporal inputs and the threshold property of gen-
erating action potentials. Circuitries can be simple
in these implementations but some properties that
are not regarded may be lost. The other is the
conductance-based implementation, which aims to re-
produce some or all mechanisms in biological neurons
faithfully. Most phenomena of biological neurons can

be inherited in these implementations but circuitries
tend to be complex. It is impossible to reproduce those
mechanisms completely.

In the previous work [1][4], we proposed a design
methodology that allows us to implement simple and
biologically realistic silicon nerve membranes. It is
based upon phase plane analyses that have been uti-
lized to reveal the mathematical structures behind the
properties of biological neurons. These properties can
be given to simple silicon neurons by constructing the
mathematical structures similar to that of biological
neurons with silicon-friendly functions.

One of the well-known properties of biological neu-
rons is oscillation against sustained input currents.
Hodgkin [5] found in his biophysical experiments of
stimulating various nerve membranes with sustained
currents that some membranes start oscillating with
an arbitrary low frequency when the currents exceed
thresholds and others with non-zero frequency. He
named the former Class 1 and the latter Class 2. Ma-
suda and Aihara [6] indicated that these differences in
excitation mechanisms may play a key role in neural
coding. Bifurcation analysis studies on biological neu-
ron models have revealed the mathematical structure
behind the Class 1 and 2 excitabilities [7][8]. Typi-
cal bifurcations that lead to Class 1 excitability are
a saddle-node on an invariant circle bifurcation and
a saddle loop homoclinic orbit bifurcation. It is well
known that Class 2 excitability can be produced by a
Hopf bifurcation.

In this paper, we show how to tune the mathemati-
cal structure of silicon nerve membranes to make them
reveal Class 1 or Class 2 excitabilities, utilizing a sim-
ple MOSFET-based nerve membrane as an example.

2 MOSFET-based nerve membrane

The design principle we proposed in the previous
work [1] replicates the mathematical structures lying
behind the properties of biological neurons with some
’MOSFET-friendly’ functions. One of the simplest sil-



icon nerve membrane models based upon the gener-
alized Hodgkin-Huxley equations can be described as
follows:
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where y represents membrane potential, m is a faster
conductance variable, n is a slower conductance vari-
able, Cy is membrane capacity, Ry is a constant resis-
tance, a is a constant, Istim is a stimulus current in-
put, βm and βn are the transconductance coefficients
of the MOSFETs for the ion channel current corre-
sponding to m and n, respectively, and Tm and Tn

are the time constants for m and n, respectively. Or-
dinarily we make Tm an order of magnitude smaller
than Tn because the faster conductance corresponds to
the sodium channel activation variable in the Hodgkin-
Huxley equations and the slower one to the potassium
channel activation variable. If we use the V-I charac-
teristic curves of differential pairs (see appendix B for
x = m and n) as the sigmoidal functions fm(y) and
fn(y), this system can be implemented with a very
simple MOSFET circuitry [4].

Because the time scale for m is sufficiently smaller
than that for n, we can reduce the faster conductance
m by assuming it relaxes to fm(y) instantaneously.
This reduction gives the slower subsystem that allows
us to trace the system’s behavior on the time scale of
a whole generation of an action potential on a phase
plane. The system equations are as follows:
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Thus the y-nullcline and the n-nullcline are:
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respectively. A typical relation between the two null-
clines is shown in Fig. 1. The conditions that they
have to satisfy for the system to inherit the fundamen-
tal properties of the biological neurons are discussed
in [1].

Figure 1: Typical phase planes of the slower subsys-
tem. (S) is a stable equilibrium (the rest state). (T)
is a saddle and (U) is an unstable equilibrium. a) The
system is near a saddle-node on an invariant circle
bifurcation. The parameters are shown in appendix
A. b) The system is near a saddle loop homoclinic
orbit bifurcation. The right segment of the unsta-
ble manifold of (T) wraps around a stable limit cy-
cle around (U). The parameters are as in a) except
Cy =0.0140(mF).

3 Parameter tuning for Class 1 and

Class 2 excitabilities

3.1 Bifurcations of the rest state

The increase in the stimulus current transforms the
phase space structure and destabilizes the rest state
in our illustrative silicon nerve membrane like in most
biological ones, which induces the repetitive firing. As
described in the introduction, it is well known that
Class 1 excitability is observed if the rest state loses
stability via a saddle-node bifurcation or a saddle loop
homoclinic orbit bifurcation, and the Class 2 excitabil-
ity via a Hopf bifurcation [7][8]. These are the most
major scenarios of repetitive firings. The phase plane
structure near a saddle-node on an invariant circle bi-
furcation is shown in Fig. 1a). In this case, the stable



equilibrium point (S) and the saddle point (T) ap-
proach each other as the y-nullcline (eq. (6)) moves
up in response to the increase in stimulus current
Istim. The smaller segment of the unstable manifold
of (T) vanishes when (S) merges with (T), and the
other segment of the unstable manifold turns to a sta-
ble limit cycle when they disappear. This limit cycle
passes near the narrow channel between the y- and n-
nullclines around the vanished saddle point, where the
velocity is very slow. By narrowing this channel, we
can delay the period of the limit cycle arbitrarily up to
infinity when the channel width becomes zero. Figure
1b) shows the phase plane structure near a saddle loop
homoclinic orbit bifurcation. In this case the right un-
stable manifold of (T) gets closer to the upper stable
manifold as the y-nullcline moves up, until it merges
with the upper segment of the stable manifold and be-
comes a closed homoclinic orbit. Then a stable limit
cycle is born around (U), which passes near the saddle
point where the velocity is very slow. In contrast to
above two scenarios, the saddle point (T) has no role
in the Hopf bifurcation. The rest state loses stability
singularly, and the system moves to a stable limit cy-
cle around it if one exists. Because the system jumps
to a limit cycle, the repetitive firing begins abruptly
with a certain non-zero frequency.

3.2 Tuning the bifurcations

As described in the above subsection, the stability
of the rest state plays a key role in neural excitabil-
ities. The local linearization method tells how it de-
pends on the parameters. The necessary and sufficient
conditions for an equilibrium point to be stable are:

λ1 + λ2 < 0 ⇔ η′(y0) <
Cy

n0βnTn

, (8)

λ1 · λ2 > 0 ⇔ η′(y0) < f ′

n(y0), (9)

where λ1 and λ2 are the eigenvalues of the Jacobian
matrix in equations (4)-(5), (n0, y0) denotes an equi-
librium point, ′ denotes d

dy
, and η(y) is the right side

of eq. (6). These conditions indicate that at a sta-
ble equilibrium point the y-nullcline should cross the
n-nullcline from over to under and the gradient of the
y-nullcline should keep smaller than a certain value.
Thus the stabilities of the equilibrium points can be
configured as in Fig. 1 if we place the leftmost cross-
point of the y-nullcline and the n-nullcline where the
gradient of the y-nullcline is sufficiently small and the
rightmost one where it is sufficiently large. Of course
we must tune Cy and Tn properly so that

Cy

n0βnTn

is

between these two gradients. In this situation, (S)

Figure 2: The bifurcation diagrams for a) a saddle-
node on invariant circle bifurcation and b) a saddle
loop homoclinic orbit bifurcation. (N) represents the
point where the stable and saddle points merge and
(H) the point where the stable limit cycle emerges. a)
The limit cycle vanishes at Ia =-0.00829(A) where (N)
exists. The parameters are as in Fig. 1 a) except Ia is
swept. b) The limit cycle vanishes at Ia =-0.00839(A).
The parameters are as in Fig. 1 b) except Ia is swept.

and (T) get closer as the y-nullcline moves up and (S)
loses stability when they merge because condition (9)
is no longer satisfied. This is the common scenario for
Class 1 excitability. If the rightmost side of condition
(8) is smaller than f ′

n(y) at the point where (S) and
(T) merge, (S) loses stability singularly via the Hopf
bifurcation before merging with (T). This is the basic
scenario for Class 2 excitability. To obtain a Class 2
nerve membrane that generates action potentials of a
reasonable size and keeps firing repetitively for a rea-
sonably wide range of stimulus current, the y-nullcline
should be shifted right to make (T) and (U) disap-
pear or, at least, to make (S) and (T) further aprat
than in Fig. 1. Class 2 excitability in our silicon nerve
membrane is discussed in [1].

The local stability analysis does not tell which of
the two scenarios appears. The bifurcation diagrams
for these scenarios are shown in Fig. 2. Let us trace



Figure 3: The bifurcation diagram of the limit cycle
along Cy. Parameters are as in appendix A except
Ia = −0.00829(A) and Cy is swept. The vertical axis
represents the upper and lower limits of the limit cycle.
The white circles at Cy =0.01283(mF) represent the
limit cycle is unstable around it.

them from right to left. In both cases, the limit cy-
cle that emerges via the Hopf bifurcation continues
with its amplitude increasing. If the amplitude is suf-
ficiently large at the point where the pair of stable
and saddle points emerges ((N) in Fig. 2, where Ia =
-0.00829(A)), the orbit of the limit cycle gets ‘trapped’
and vanishes; otherwise it persists until it merges with
the unstable manifold of the saddle point.

The amplitude of the limit cycle can be controlled
by Cy, which works as a time scale factor. It gets
smaller as Cy becomes larger because the velocity of
the system in the y direction decreases. In Fig. 3, we
show the bifurcation diagram of the limit cycle for an
Ia value just near the point (N) in Fig. 2. The limit
cycle is stable except when the limit cycle passes at
the point (N) (Cy ' 0.01283(mF) in Fig. 3). Thus, we
obtain the saddle-node on invariant circle bifurcation
if Cy is below 0.01283 (mF) and the other one if it is
above.

4 Conclusions

We have shown how Class 1 and Class 2 excitabili-
ties are obtained with a MOSFET-based nerve mem-
brane. Once the phase plane structure is configured
properly by tuning the parameters that affect the
forms of the nullclines, we can easily realize the de-
sired neural excitability by tuning Cy and Tn. We
have shown that the two types of Class 1 excitabilities
can be selected only by tuning Cy. Because the ratio of
the time scales of y and n affects the amplitude of the

limit cycle, Tn can also be tuned. This paper indicates
that our illustrative MOSFET-based nerve membrane
can function as a Class 1 or Class 2 nerve membrane
according to the proposed parameter tuning.
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Appendix

A Parameters:

Para-
meter

Value
Para-
meter

Value

βm 0.0406 (A/V2) βn 0.0799 (A/V2)
δm -0.5200 (V) δn 0.8000 (V)
εm 2.000 (V) εn 2.600 (V)
m̄ 1.300 (V) n̄ 1.400 (V)
Tm 0.1300 (ms) Tn 1.500 (ms)
Cy 0.0100 (mF) Ry 200 (Ω)
a 0 (A) IA -0.00834 (A)

B Characteristics of differential pairs:
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