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Abstract

Recently, due to the advances in many applica-
tion areas such as computer animation, motion im-
age processing, and so forth, it has become increas-
ingly apparent that the study of four-dimensional pat-
tern processing has been of crucial importance. Thus,
we think that the research of four-dimansional au-
tomata as a computational model of four-dimensional
pattern processing has also been meaningful. This
paper introduces four-dimensional multicounter au-
tomata, and investigates some their properties. We
show the differences between the accepting powers
of seven-way and eight-way four-dimensional multi-
counter automata, and between the accepting powers
of deterministic and nondeterministic seven-way four-
dimensional multicounter automata.

Key Words : computational complexity, four-dimen-
sional automaton, multicounter, nondeterminism.

1 Introduction and Preliminaries

Inoue et al. [5] introduced a two-dimensional multi-
counter automaton and investigated its basic proper-
ties. Szepietowski also investigated some of its prop-
erties [10]. A two-dimensional k-counter automaton
M is a two-dimensional finite automaton [1] that has k
counters. The action of M is similar to that of the one-
dimensional off-line k-counter machine [3], except that
the input head of M can move up, down, right, or left
on a two-dimensional input tape. In [7], Sakamoto
et al. introduced multicounter automata on three-
dimensional input tapes.

By the way, during the past about forty years, sev-
eral automata on two- or three-dimensional tapes have
been proposed and many properties of them have been
obtained [6,8]. On the other hand, recently, due to
the advances in computer animation, motion image
processing, and so on, the study of four-dimensional
information processing has been of great importance.
Thus, we think that the study of four-dimensional
automata has been meaningful as the computational
model of four-dimensional information processing [9].

In this paper, we introduce and investigate about
eight-way four-dimensional multicounter automata as
new four-dimensional computational models. An
eight-way four-dimensional k-counter automaton (4-
kCA), which consists of a finite control, k counters,
a read-only four-dimensional input tape, k counter
heads, and an input head which can move in eight
directions — north, east, south, west, up, down, fu-
ture or past. In general, when we must think about
the algorithm of four-dimensional pattern processing
by using the restricted computational resources, if the
algorithm is fine in spite of its restricted computational
resources, it will be valued highly. It is the same with
automata theory. So we next introduce and investi-
gate a seven-way four-dimensional k-counter automa-
ton (SV 4-kCA) which is a restricted type of 4-kCA.
SV 4-kCA is a 4-kCA whose input head can move in
seven directions — north, east, south, west, up, down,
or future. In this paper, we let each sidelength of each
input tape of these automata be equivalent in order to
increase the theoretical interest.

Let Σ be a finite set of symbols. A four-dimensional
tape over Σ is a four-dimensional rectangular array of
elements of Σ. The set of all the four-dimensional
tapes over Σ is denoted by Σ(4).

Given a tape x ∈ Σ(4), for each j(1 ≤ j ≤ 4), we let
lj(x) be the length of x along the jth axis. The set of
all x ∈ Σ(4) with l1(x) = m1, l2(x) = m2, l3(x) = m3,
and l4(x) = m4 is denoted by Σ(m1,m2,m3,m4). When
1 ≤ ji ≤ lj(x) for each j(1 ≤ j ≤ 4), let x(i1, i2, i3, i4)
denote the symbol in x with coordinates (i1, i2, i3, i4).
Furthermore, we define

x[(i1, i2, i3, i4), (i′1, i
′
2, i

′
3, i

′
4)],

when 1 ≤ ij ≤ i′j ≤ lj(x) for each integer j(1 ≤ j ≤ 4),
as the four-dimensional tape y satisfying the following
(i) and (ii) :

(i) for each j(1 ≤ j ≤ 4), lj(y) = i′j − ij + 1;
(ii) for each r1, r2, r3, r4 (1 ≤ r1 ≤ l1(y), 1 ≤ r2 ≤

l2(y), 1 ≤ r3 ≤ l3(y), 1 ≤ r4 ≤ l4(y)), y(r1, r2, r3, r4) =
x(r1 + i1 − 1, r2 + i2 − 1, r3 + i3 − 1, r4 + i4 − 1).

Four-dimensional tape is the sequence of three-
dimensional rectangular arrays along the time axis. By
Cubex(i) (i ≤ 1), we denote the ith three-dimensional
rectangular array along the time axis in a tape x ∈
Σ(4) which each sidelength is equivalent.



We now introduce a seven- or eight-way four-
dimensional multicounter automaton. An eight-way
four-dimensional k-counter automaton (4-kCA) M,
k ≥ 1, has a read-only four-dimensional input tape
surrounded by boundary symbols ]’s and k counters.
(Of course, M has a finite control, an input head, and
k counter heads.) The action of M is similar to that of
the two- or three-dimensional multicounter automaton
[5, 7, 10], except that the input head of M can move in
eight directions — east, west, south, north, up, down,
future, or past. That is, when an input tape x ∈ Σ(4)

(where Σ is the set of input symbols of M and the
boundary symbol ]’s is not in Σ) is presented to M,
M determines the next state of the finite control, the
move direction (east, west, south, north, up, down, fu-
ture, past, or no move) of the input head, and the move
direction (right, left, or no move) of each counter head,
depending on the present state of the finite control, the
symbol read by the input head, and whether or not the
contents of each counter is zero (i.e., whether or not
each counter head is on the bottom symbol Z0 of the
counter). If the input head falls off the tape x with
boundary symbols, M can make no further move. M
starts in its initial state, with the input head on posi-
tion (1,1,1,1) of the tape x, and with the contents of
each counter zero (i.e., with each counter on the bot-
tom symbol Z0 of the counter). We say that M accepts
the tape x if M eventually halts in a specified state
(accepting state) on the bottom boundary symbol ]
of the input. We denote by T (M) the set of all the
four-dimensional tapes accepted by M. A seven-way
four-dimensional k-counter automaton (SV 4-kCA) is
a 4-kCA whose input head can move in seven direc-
tions — east, west, south, north, up, down, or future
(see Fig.1).

Let L(m) : N 7→ N (where N is the set of all the
positive integers) be a function with one variable m.
A 4-kCA (SV 4-kCA) M is said to be L(m) counter-
bounded if for each m ≥ 1 and each input tape x (ac-
cepted by M) with l1(x) = l2(x) = l3(x) = l4(x) = m,
the length of each counter of M is bounded by L(m).
As usual, we define nondeterministic and determin-
istic 4-kCA’s (SV 4-kCA’s). By N4-kCA(L(m)) (re-
spectively, D4-kCA(L(m)), NSV 4-kCA(L(m)), and
DSV 4-kCA(L(m))), we denote a nondeterministic 4-
kCA (respectively, deterministic 4-kCA, nondeter-
ministic SV 4-kCA, and deterministic SV 4-kCA )
whose each sidelength of each input tape is equivalent
and which is L(m) counter-bounded. Let L[N4-kCA(
L(m))] = {T | T = T (M) for some N4-kCA(L(m))
M}. L[N4-kCA(L(m))], L[NSV 4-kCA(L(m))], and
L[DSV 4-kCA(L(m))] have similar meanings.

We briefly recall seven-way four-dimensional Tur-
ing machines [9]. A seven-way four-dimensional Tur-
ing machine M has a read-only four-dimensional in-
put tape with boundary symbols ]′s and one semiin-
finite storage tape. (Of course, M has a finite con-
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Fig. 1: Four-dimensional k-counter automaton.

trol, an input head, and a storage-tape head.) The
action of M is similar to that of the two- or three-
dimensional Turing machine [6,8] which has a read-
only input tape with boundary symbols ]′s and one
semiinfinite storage tape, except that the input head
of M can move in seven directions — east, west, south,
north, up, down, or future. M starts in its initial
state, with the input head on position (1, 1, 1, 1) of
an input tape x, and with all the cells of the stor-
age tape blank. We say that M accepts the tape
x if M eventually halts in an accepting state. Let
L(m) : N 7→ N be a function with one variable
m. By NSV 4-TM(L(m)) (DSV 4-TM(L(m))) we
denote a nondeterministic (deterministic) seven-way
four-dimensional Turing machine whose each side-
length of each input tape is equivalent and which does
not scan more than L(m) cells on the storage tape
for any input tape x (accepted by M) with l1(x) =
l2(x) = l3(x) = l4(x) = m. Let L[NSV 4-TM(L(m))]
( L[DSV 4-TM(L(m))] ) denote the class of sets ac-
cepted by NSV4-TM(L(m))’s (DSV 4-TM(L(M))’s).

We denote a nondeterministic (deterministic) four-
dimensional finite automaton by N4-FA (D4-FA). A
seven-way N4-FA (seven-way D4-FA) is an N4-FA
(D4-FA) whose input tape head can move in seven
directions — east, west, south, north, up, down, or fu-
ture. By N4-FA (D4-FA, NSV 4-FA, DSV 4-FA) we
denote an N4-FA (D4-FA, seven-way N4-FA, seven-
way D4-FA) whose each sidelength of each input tape
is equivalent [9]. For example, let L[D4-FA] denote
the class of sets accepted by D4-FA’s. As is easily



seen, it follows that for any constant k, L[D4-FA] =
L[D4-1CA(k)], L[DSV 4-FA] = L[DSV 4-1CA(k)],
and so on.

We conclude this section by giving a relationship
between seven-way four-dimensional multicounter au-
tomata and seven-way four-dimensional Turing ma-
chines, which will be used in the latter sections.

[Theorem 1.1]

(1)
⋃

1≤k<∞ L[XSV 4-kCA(L(m))] ⊆
L[XSV 4-TM(log L(m))]

for any L(m) : N 7→ N and any X ∈ {D, N},
(2)

⋃
1≤k<∞ L[XSV 4-kCA(m)] =

L[XSV 4-TM(log m)]
for any X ∈ {D, N}.

(Proof) (1) : Let M be an XSV 4-kCA(L(m)). The
set T (M) is also accepted by the XSV 4-TM(log L(m)
) which divides the storage tape into k tracks and
makes each track play a role of the corresponding
counter of M .

(2) : From (1),
⋃

1≤k<∞ L [XSV 4-kCA(m)] ⊆
L[XSV 4-TM(log m)]. It is well known that any log m
tape-bounded one-dimensional off-line Turing machine
can be simulated by a one-dimensional two-way mul-
tihead finite automaton [4]. By using the same argu-
ment as in the proof of this fact, we can easily show
that any XSV 4-TM(log m) can be simulated by an
XSV 4-kCA(m) for some k ≥ 1. Thus L[XSV 4-TM(
log m)] ⊆ ⋃

1≤k<∞ L[XSV 4-kCA(m)]. ¤

2 Seven-Way versus Eight-Way

In this section, we investigate the difference be-
tween the accepting powers of counter-bounded eight-
way and seven-way four-dimensional multicounter au-
tomata.

We need the following two lemmas.

[Lemma 2.1] Let T1 = {x ∈ {0, 1}(4) | ∃m ≥ 2 [ l1(x)
= l2(x)= l3(x)= l4(x)=m] & Cubex(1)=Cubex(2)},
and let L1(m) : N 7→ N be a function such that
lim

m→∞
[(log L1(m))/m3] = 0. Then,

(1) T1 ∈ L[D4-FA], and

(2) T1 /∈ ⋃
1≤k<∞ L[NSV 4-kCA(L1(m))].

(proof) The proof of (1) is omitted here, since it is
obvious. We now prove (2). Suppose that there is an
NSV 4-TM(L′1(m)) M accepting T1, where L′1(m) :
N 7→ N is a function such that lim

m→∞
[L′1(m)/m3] = 0.

For each m ≥ 3, let

V (m)={x∈T1 | l1(x)= l2(x)= l3(x)= l4(x)=m
& x[(1, 1, 1, 3), (m,m, m,m)] ∈ {0}(4)}.

Clearly, each tape in V (m) is accepted by M . For
any (seven-way) four-dimensional Turing machine M ,
we define the configuration of M to be a combination
of the (1) state of the finite control, (2) position of
the input head within the input tape, (3) position of
the storage-tape head within the nonblank portion of
the storage tape, and (4) contents of the storage tape.
For each x ∈ V (m), let conf(x) be the set of config-
urations of M just after the point, in the accepting
computations on x, where the input head left the first
cube of x. Then the following proposition must hold.

[Proposition 2.1] For any two different tapes x, y ∈
V (m),

conf(x) ∩ conf(y) = φ (empty set).

(Proof) Suppose that conf(x) ∩ conf(y) 6= φ and
σ ∈ conf(x) ∩ conf(y). It is obvious that if, starting
with this configuration σ, the input head proceeds to
read the [(1, 1, 1, 2), (m,m, m, m)]-segment of x, then
M could enter an accepting state. Therefore, by as-
sumption, it follows that the tape z[ l1(z) = l2(z) =
l3(z) = l4(z) = m] satisfying the following two condi-
tions must be also accepted by M : (i) z[(1, 1, 1, 1), (
m,m,m, 1)]=y[(1, 1, 1, 1), (m, m,m, 1)]; (ii) z[(1, 1, 1,
2), (m,m, m,m)] = x[(1, 1, 1, 2), (m, m,m, m)]. This
contradicts the fact that z is not in T1. ¤

(Proof of Lemma 2.1 (continued)) Clearly, |V (m)|
= 2m3

, where for any set S, |S| denotes the number
of elements of S. Let c(m) be the number of possible
configurations of M just after the input head left the
first cube of tapes in V (m). Then

c(m) ≤ s(m + 2)3L′1(m)tL
′
1(m).

(The factor s is the number of possible states of finite
control, (m + 2)3 is the number of possible positions
of the input head, L′1(m) is the number of possible
positions of the storage-tape head, t is the number
of storage-tape symbols, and tL

′
1(m) is the number of

possible contents of the nonblank portion of storage
tape.) Since lim

m→∞
[L′1(m)/m3] = 0, we have

|V (m)| > c(m) for large m.

Therefore, it follows that for large m there must be
different tapes x, y ∈ V (m) such that conf(x) ∩
conf(y) 6= φ. This contradicts Proposition 2.1,
and thus T1 is not in L[NSV 4-TM(L′1(m))], where
L′1(m) : N 7→ N is a function such that lim

m→∞
[L′1(m)/

m3] = 0. From this result and from the condition that
lim

m→∞
[(log L1(m))/m3] = 0, it follows that T1 is not

in L[NSV 4-TM(log L1(m))]. Part (2) of the lemma
follows from this fact and Theorem 1.1 (1). ¤

[Lemma 2.2] Let T2 ={x ∈ {0, 1}(4) | ∃m ≥ 1 [ l1(x)
= l2(x)= l3(x)= l4(x)=2m & x[(1, 1, 1, 1), (2m, 2m,
2m,m)] = x[(1, 1, 1, m + 1), (2m, 2m, 2m, 2m)] (that
is, the top and bottom halves of x are identical)]},



and let L2(m) : N 7→ N be a function such that
lim

m→∞
[(log L2(m))/m4] = 0. Then,

(1) T2 ∈ L[D4-1CA(m)], and

(2) T2 /∈ ⋃
1≤k<∞ L[NSV 4-kCA(L2(m))].

(Proof) The proof of Part (1) is omitted here, since it
is obvious. Part (2) is given by using the same tech-
nique as in the proof of Lemma 2.1 (2). ¤

From Lemmas 2.1 and 2.2, we can get the following
theorem.

[Theorem 2.1] (1) Let L(m) : N 7→ N be a function
such that lim

m→∞
[(log L(m))/m3] = 0. Then, L[D4-FA]

−⋃
1≤k<∞ L[NSV 4-kCA(L(m))] 6= φ. (2) Let L′(m) :

N 7→ N be a function such that lim
m→∞

[(log L′(m))/m4]

= 0. then, L[D4-1CA(m)]−⋃
1≤k<∞ L[NSV 4-kCA(

L′(m))] 6= φ.

3 Nondeterminism versus Determin-
ism

In this section, we investigate the difference
between the accepting powers of counter-bounded
deterministic and nondeterministic seven-way four-
dimensional multicounter automata.

We need the following two lemmas. The proof of
the following lemmas is omitted here since it is similar
to that of Lemma 2.1.

[Lemma 3.1] Let T3 = {x ∈ {0, 1}(4) | ∃m ≥ 2 [ l1(x)
= l2(x)= l3(x)= l4(x)=m] & Cubex(1) 6=Cubex(2)},
and L1(m) : N 7→ N be a function such that
lim

m→∞
[(log L1(m))/m3] = 0. Then,

(1) T3 ∈ L[NSV 4-FA], and

(2) T3 /∈ ⋃
1≤k<∞ L[DSV 4-kCA(L1(m))].

[Lemma 3.2] Let T4 = {x ∈ {0, 1}(4) | ∃m ≥ 2 [ l1(x)
= l2(x) = l3(x) = l4(x) = 2m & x[(1, 1, 1, 1), (2m, 2m,
2m,m)] 6= x[(1, 1, 1,m + 1), (2m, 2m, 2m, 2m)]]}, and
let L2(m) : N 7→ N be a function such that lim

m→∞
[(log

L2(m))/m4] = 0. Then,

(1) T4 ∈ L[NSV 4-1CA(m)], and
(2) T4 /∈ ⋃

1≤k<∞ L[DSV 4-kCA(L2(m))].

From Lemmas 3.1 and 3.2, we can get the following
theorem.

[Theorem 3.1] (1) Let L(m) : N 7→ N be a func-
tion such that lim

m→∞
[(log L(m))/m3] = 0. Then,

L[NSV 4-FA] − ⋃
1≤k<∞ L[DSV 4-kCA(L(m))] 6= φ.

(2) Let L′(m) : N 7→ N be a function such that
lim

m→∞
[(log L′(m))/m4] = 0. Then, L[NSV 4-1CA(m)]

− ⋃
1≤k<∞ L[DSV 4-kCA(L′(m))] 6= φ.

4 Conclusion

In this paper, we introduced four-dimensional mul-
ticounter automata, and we investigated the accepting
powers of counter-bounded seven-way and eight-way
four-dimensional multicounter automata. Then, we
investigated a relationship between determinism and
nondeterminism. In these subjects, we stated only for
four-dimensional input tape which each sidelength is
equivalent.

It will be also interesting to investigate the ac-
cepting powers of ‘alternating’ four-dimensional mul-
ticounter automata (see [2] for the concept of ‘alter-
nation’).
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