
Accepting Powers of Four-Dimensional Alternating Turing Machines
with Only Universal States

Youichirou Nakama1, Makoto Sakamoto1, Makoto Saito1, Shinya Taniguchi1,
Takao Ito2, Katsushi Inoue3, Hiroshi Furutani1 and Susumu Katayama1

1Dept. of Computer Science and Systems Engineering, Miyazaki University, Miyazaki 889-2192, JAPAN
2Dept. of Business Administration, Ube National College of Technology, Ube 755-8555, JAPAN
3Dept. of Computer Science and Systems Engineering, Yamaguchi University, Ube 755-8611, JAPAN

Abstract
During the past about forty years, many types of

two- or three-dimensional automata have been pro-
posed and investigated the properties of them as the
computational model of pattern processing. On the
other hand, recently, due to the advances in many
application areas such as computer animation, mo-
tion image processing, and so on, the study of three-
dimensional pattern processing with the time axis has
been of crucial importance. Thus, we think that
it is very useful for analyzing computation of three-
dimensional pattern processing with the time axis to
explicate the properties of four-dimensional automata.
In this paper, we deal with four-dimensional alter-
nating Turing machines, and investigate several ac-
cepting powers of four-dimensional alternating Turing
machines which each sidelength of each input tape is
equivalent.
KeyWords : alternation, configuration, four-dimen-
sional input tape, space bound, Turing machine.

1 Introduction and Preliminaries

Blum et al. first proposed two-dimensional au-
tomata, and investigated their pattern recognition
abilities in 1967 [1]. Since then, many researchers in
this field have been investigating a lot of properties
about automata on two- or three-dimensional tapes.
In 1976, Chandra et al. introduced the concept of
‘alternation’as a theoretical model of parallel compu-
tation [2]. After that, Inoue et al. introduced two-
dimensional alternating Turing machines as a gener-
alization of two-dimensional nondeterministic Turing
machines and as a mechanism to model parallel com-
putation [5]. Moreover, Sakamoto et al. presented
three-dimensional alternating Turing machines in [7].

On the other hand, recently, due to the advances
in many application areas such as computer anima-

tion, motion image processing, and so forth, it has
become increasingly apparent that the study of four-
dimensional pattern processing, i.e., three-dimensional
automata with the time axis should be of crucial im-
portance. Thus, we think that it is very useful for an-
alyzing computation of four-dimensional pattern pro-
cessing to explicate the properties of four-dimensional
automata. From this viewpoint, we introduced some
four-dimensional automata[6, 8].

In this paper, we continue the investigations about
four-dimensional alternating Turing machines [6], and
mainly investigate fundamental properties of four-
dimensional alternating Turing machines with only
universal states which each sidelength of each input
tape is equivalent.

Let Σ be a finite set of symbols. A four-dimensional
input tape over Σ is a four-dimensional rectangular
array of elements of Σ. The set of all the four-
dimensional input tapes over Σ is denoted by Σ(4).
Given an input tape x ∈ Σ(4), for each j(1 ≤ j ≤ 4),
we let lj(x) be the length of x along the jth axis. The
set of all x ∈ Σ(4) with l1(x) = m1, l2(x) = m2, l3(x)
= m3, and l4(x) = m4 is denoted by Σ(m1,m2,m3,m4).
If 1 ≤ ij ≤ lj(x) for each j(1 ≤ j ≤ 4), let x(i1, i2, i3,
i4) denote the symbol in x with coordinates (i1, i2, i3,
i4). Furthermore, we define x [(i1, i2, i3, i4), (i′1, i′2,
i′3, i′4)], when 1 ≤ ij ≤ i′j ≤ lj(x) for each integer j(1 ≤
j ≤ 4), as the four-dimensional input tape y satisfying
the following:

(i) for each j(1 ≤ j ≤ 4), lj(y) = i′j − ij + 1;

(ii) for each r1, r2, r3, r4 (1 ≤ r1 ≤ l1(y), 1 ≤ r2 ≤
l2(y), 1 ≤ r3 ≤ l3(y), 1 ≤ r4 ≤ l4(y)), y(r1, r2,
r3, r4) = x(r1 + i1 − 1, r2 + i2 − 1, r3 + i3 − 1,
r4 + i4 − 1).

As usual, a four-dimensional input tape x over Σ
is surrounded by the boundary symbols #’s (# /∈ Σ).
Furthermore, four-dimensional tape is the sequence of
three-dimensional rectangular arrays along the time



axis. By Cubex(i) (i ≥ 1), we denote the ith three-
dimensional rectanglar array along the time axis in x
∈ Σ(4) which each sidelength is equivalent.

We now recall the definition of a four-dimensional
alternating Turing machine (4-ATM), which can
be considered as an alternating version of a four-
dimensional Turing machine (4-TM) [8].

4-ATM M is defined by the 7-tuple

M = (Q, q0, U ,F , Σ, Γ, δ), where

(1) Q is a finite set of states;

(2) q0 ∈ Q is the initial state;

(3) U ⊆ Q is the set of universal states;

(4) F ⊆ Q is the set of accepting states;

(5) Σ is a finite input alphabet (# /∈ Σ is the boundary
symbol);

(6) Γ is a finite storage-tape alphabet (B ∈ Γ is the
blank symbol), and

(7) δ ⊆ (Q × (Σ ∪ {#}) × Γ) × (Q × (Γ− {B}) ×
{east, west, south, north, up, down, future, past,
no move} × {right, left, no move}) is the next-
move relation.

A state q in Q − U is said to be existential. As
shown in Fig. 1, the machine M has a read-only four-
dimensional input tape with boundary symbols #’s
and one semi-infinite storage tape, initially blank. Of
course, M has a finite control, an input head, and a
storage-tape head. A position is assigned to each cell of
the read-only input tape and to each cell of the storage
tape, as shown in Fig. 1. The step of M is similar to
that of a two- or three-dimensional Turing machine
[3–5, 7], except that the input head of M can move in
eight directions. We say that M accepts the tape x if
it eventually enters an accepting state. Note that the
machine cannot write the blank symbol. If the input
head falls off the input tape, or if the storage head falls
off the storage tape (by moving left), then the machine
M can make no further move.

A seven-way four-dimensional alternating Turing
machine (SV 4-ATM) is a 4-ATM whose input head
can move in seven directions – east, west, south,
north, up, down, or future, and an alternating ver-
sion of a seven-way four-dimensional Turing machine
(SV 4-TM).

Let L(m): N → R be a function with one variable
m, where N is the set of all positive integers and R
is the set of all nonnegative real numbers. With each
4-ATM (or SV 4-ATM) M we associate a space com-
plexity function SPACE that takes configurations to
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Fig. 1: Four-dimensional alternating Turing machine.

natural numbers. That is, for each configuration c =
(x, (i1, i2, i3, i4), (q, α, j)), let SPACE(c) = |α|. M
is said to be L(m) space-bounded if for each m ≥ 1
and for each x with l1(x) = l2(x) = l3(x) = l4(x) =
m, if x is accepted by M , then there is an accepting
computation tree of M on input x such that for each
node v of the tree, SPACE(L(v)) ≤ dL(m)e1. We
denote an L(m) space-bounded 4-ATM (SV 4-ATM)
by 4-ATM (L(m)) [SV 4-ATM (L(m))].

A 4-ATM(0) [SV 4-ATM(0)] is called a four-
dimensional alternating finite automaton (seven-way
four-dimensional alternating finite automaton), which
can be considered as an alternating version of a four-
dimensional finite automaton (4-FA) (seven-way four-
dimensional finite automaton (SV 4-FA)), and is de-
noted by 4-AFA (SV 4-AFA).

In order to distinguish among determinism, non-
determinism, and alternation, we denote a determin-
istic 3-TM [nondeterministic four-dimensional Tur-
ing machine (4-TM), deterministic seven-way four-
dimensional Turing machine (SV 4-TM), nondeter-
ministic SV 4-TM , deterministic 4-TM (L(m)), non-
deterministic 4-TM (L(m)), deterministic SV 4-TM
(L(m)), nondeterministic SV 4-TM (L(m)), deter-
ministic 4-FA, nondeterministic 4-FA, determinis-
tic SV 4-FA, nondeterministic SV 4-FA] by 4-DTM
[4-NTM , SV 4-DTM , SV 4-NTM , 4-DTM (L(m)),
4-NTM (L(m)), SV 4-DTM (L(m)), SV 4-NTM
(L(m)), 4-DFA, 4-NFA, SV 4-DFA, SV 4-NFA].

Let M be an automaton on a three-dimensional
tape. We denote by T (M) the set of all three-
dimensional tapes accepted by M . As usual, for each
X ∈ {D, N , A}, we denote, for example, by £[3-
XTM ] the class of sets of all the four-dimensional
tapes accepted by 4-XTM ’s. That is, £[4-XTM ]
= {T | T = T (M) for some 4-XTM M}. £[SV 4-

1dre means the smallest integer greater than or equal to r.



XTM ], £[4-XTM (L(m))], £[SV 4-XTM (L(m))],
£[4-XFA], and £[SV 4-XFA] also have analogous
meanings.

2 Accepting Powers of SV 4-UTM ’s

We denote by SV 4-UTM (SV 4-UFA) an SV 4-
ATM (SV 4-AFA) which has only universal states.
For any function L: N→ R, we denote by SV 4-UTM
(L(m)) an L(m) space-bounded SV 4-UTM , and let
£[SV 4-UTM(L(m))] = {T | T = T (M) for some SV 4-
UTM (L(m)) M}. £[SV 4-UFA] is defined in a simi-
lar way.

In this section, we investigate the relationship be-
tween the accepting powers of SV 4-UTM ’s and SV 4-
ATM ’s (SV 4-NTM ’s or SV 4-DTM ’s).

The following lemma says that there exists a set
accepted by an SV 4-NFA, but not accepted by any
SV 4-UTM (L(m)) for any L such that L(m) = o(m3).

Lemma 2.1. Let T1 = {x ∈ {0, 1}(4) | ∃ m ≥ 2
[l1(x) = l2(x) = l3(x) = l4(x) = m] & Cubex(1) =
Cubex(2)}. Then

(1) T 1 ∈ £[SV 4-NFA],2 and

(2) T 1 /∈ £[SV 4-UTM (L(m))] for any L: N → R
such that L(m) = o(m3).

Proof: The set T 1 is accepted by an SV 4-NFA
which, given an input x ∈ {0, 1}(4), simply checks
by using nondeterministical states that Cubex(1) 6=
Cubex(2). It is obvious that part (1) of the lemma
holds. Here, we only prove (2). Suppose that there
exists an SV 4-UTM (L(m)) M accepting T 1, where
L(m) = o(m3). Let s and r be the numbers of states
(of the finite control) and storage tape symbols of M ,
respectively. For each m ≥ 3, let

V (m) = {x ∈ {0, 1}(4) | l1(x) = l2(x) = l3(x) = l4(x)

= m & Cubex(1)= Cubex(2)

& x [(1, 1, 1, 3), (m, m, m, m)] ∈ {0}(4)}.

For each x in V (m), let S(x) and C(x) be sets of
semi-configurations of M defined as follows:

S(x) = {((i1, i2, i3, 2), (q, α, j)) | there exists a
computation path of M on x, IM (x) `∗M (x, ((i1, i2,
i3, 1), (q′, α′, j′))) `M (x, ((i1, i2, i3, 2), (q, α, j)))
(that is, (x, ((i1, i2, i3, 2), (q, α, j))) is a configuration
of M just after the input head reached Cubex(2))},

C(x) = {σ ∈ S(x) | when, starting with the con-
figuration (x, σ), M proceeds to read the segment

2If T ⊆ Σ(4), then define T = Σ(4) − T .

Cubex(2), there exists a sequence of steps of M in
which M never enters an accepting state}.

(Note that, for each x in V (m), C(x) is not empty
since x is not in T 1, and so not accepted by M .) Then
the following proposition must hold.

Proposition 2.1. For any two different tapes x, y in
V (m), C(x) ∩ C(y) = φ.
[ Proof: This proposition can be proved by the well-
known technique [7]. ¤]
Proof of Lemma 2.1(continued) : Clearly, |V (m)| =
2m3

and p(m) ≤ s(m+2)3L(m)rL(m), where p(m) de-
notes the number of possible semi-configurations of M
just after the input head reached the second plane of
tapes in V (m). Since L(m) = o(m3), we have |V (m)|
> p(m) for large m. Therefore, it follows that for large
m there must be two different tapes x, y in V (m) such
that C(x) ∩ C(y) 6= φ. This contradicts Proposition
2.1 and completes the proof of (2). ¤

We need the following three lemmas. The proof of
the following lemmas is omitted here since it is similar
to that of Lemma 2.1.

Lemma 2.2. Let T2 = {x ∈ {0, 1}(4) | ∃ m ≥ 1 [l1(x)
= l2(x) = l3(x) = l4(x) = 2m & x [(1, 1, 1, 1), (2m,
2m, 2m, m)] = x [(1, 1, 1, m + 1), (2m, 2m, 2m,
2m)]]}. Then

(1) T 2 ∈ £[SV 4-NTM (log m)], and

(2) T 2 /∈ £[SV 4-UTM (L(m))] for any L: N → R
such that L(m) = o(m4).

Lemma 2.3. Let T2 be the set described in Lemma
2.1. Then

(1) T1 ∈ £[SV 4-UFA], and

(2) T1 /∈ £[SV 4-NTM (L(m))] for any L: N → R
such that L(m) = o(m3).

Lemma 2.4. Let T2 be the set described in Lemma
2.2. Then

(1) T2 ∈ £[SV 4-UTM (log m)], and

(2) T2 /∈ £[SV 4-NTM (L(m))] for any L: N → R
such that L(m) = o(m4).

From Lemmas 2.1–2.4, we can get

Theorem 2.1. Let L: N → R be a function such that
(i) L(m) = o(m2), or (ii) L(m) ≥ log m (m ≥ 1) and
L(m) = o(m4). Then

(1) £[SV 4-UTM (L(m))] ( £[SV 4-ATM (L(m))],



(2) £[SV 4-UTM (L(m))] is incomparable with
£[SV 4-NTM (L(m))], and

(3) £[SV 4-DTM (L(m))] ( £[SV 4-UTM (L(m))].

Corollary 2.1. (1) £[SV 4-UFA] ( £[SV 4-AFA].
(2) £[SV 4-UFA] is incomparable with £[SV 4-NFA].
(3) £[SV 4-DFA] ( £[SV 4-UFA].

It is natural to ask how much space is necessary
and sufficient for SV 4-DTM ’s and SV 4-NTM ’s to
simulate SV 4-UFA’s. The following theorem answers
this question.

THEOREM 2.2. (1) £[SV 4-UFA] ( £[SV 4-
DTM (m3)]. (2) m3 space is necessary and sufficient
for SV 4-DTM ’s and SV 4-NTM ’s to simulate SV 4-
UFA’s.

Moreover, by using a technique similar to that in
the proof of Theorem 3.2 in [2], we can get the follow-
ing theorem.

THEOREM 2.3. m4 space is necessary and suf-
ficient for SV 4-DTM ’s to simulate SV 4-AFA’s and
4-AFA’s.

3 Accepting Powers of 4-UTM ’s

We denote by 4-UTM (4-UFA) a 4-ATM (4-AFA)
which has only universal states. For any function L:
N→ R, we denote by 4-UTM (L(m)) an L(m) space-
bounded 4-UTM , and let £[4-UTM (L(m))] = {T |
T = T (M) for some 4-UTM (L(m)) M}. £[4-UFA]
is defined in a similar way. This section first investi-
gates a relationship between the accepting powers of
4-UTM ’s and 4-ATM ’s (4-NTM ’s or 4-DTM ’s).

From Lemma 5.2 in [7], we can get the following
results.

Theorem 3.1. Let L: N → R be a function such
that L(m) = o(log m). Then, £[4-DTM (L(m))] (
£[4-UTM (L(m))] ( £[4-ATM (L(m))].

Corollary 3.1. £[4-DFA]( £[4-UFA]( £[4-AFA].

We then investigate relationships between the ac-
cepting powers of eight-way and seven-way four-
dimensional machines. By using the same way as in
the proof of Theorems 2.1–2.3, we can get the follow-
ing results.

Theorem 3.2. Let L: N → R be a function such
that (i) L(m)3 = o(m3), or (ii) L(m) ≥ log m (m ≥ 1)

and L(m) = o(m4). Then, £[SV 4-UTM (L(m))] (
£[4-UTM (L(m))].

Corollary 3.2. £[SV 4-UFA] ( £[4-UFA].

Theorem 3.3. (1) £[4-UFA] ( £[SV 4-DTM (m4)],
and (2) m4 space is necessary and sufficient for SV 4-
DTM ’s to simulate 4-UFA’s.

4 Conclusion

In this paper, we investigated the accepting powers
of four-dimensional alternating Turing machines with
only universal states which each sidelength of each in-
put tape is equivalent.

Let Tc be the set of all the four-dimensional con-
nected tapes. If Tc is accepted by four-dimensional al-
ternating Turing machines with only universal states,
it will be interesting to investigate how much space
is necessary and sufficient for four-dimensional alter-
nating Turing machines with only universal states to
accept Tc.
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