
Identification of Time Series Signals Using Dynamical Neural Network with
GA-based Training

Kunihiko Nakazono Kouhei Ohnishi
University of the Ryukyus Keio University

Senbaru 1, Nishihara, Okinawa. 903–0213 Hiyoshi 3–14–1, Yokohama. 222–8522
nakazono@tec.u-ryukyu.ac.jp ohnishi@sd.keio.ac.jp

Hiroshi Kinjo
University of the Ryukyus

Senbaru 1, Nishihara, Okinawa. 903–0213
kinjo@tec.u-ryukyu.ac.jp

Abstract
In this paper, we propose a dynamical neural net-

work (DNN) having the properties of inertia, viscos-
ity, and stiffness and its training algorithm based on
a genetic algorithm (GA). In a previous study, we
proposed a modified training algorithm for the DNN
based on error backpropagation method. However, in
the former method it was necessary to determine the
values of the DNN parameters by trial and error. In
the proposed DNN, the GA is designed to train not
only the connecting weights but also the parameters
of the DNN. Simulation results show that the DNN
trained by GA obtains good training performance for
time series patterns generated from unknown system.

1 Introduction

Recently, recurrent neural networks and spiking
neural networks have attracted more research interest
than layered neural networks having static mapping
capability [1, 2, 3, 4]. The recurrent neural network is
a possible candidate for improving the system dynam-
ics because it incorporates a feedback structure in the
neuron unit and takes time delayed inputs into consid-
eration. Research on spiking neural networks is also
ongoing. Spiking neural networks treat spike trains
and process the signals based on spike pulses. How-
ever, the network structure in recurrent neural net-
works and spiking neural networks is complex com-
pared to that in layered neural networks with a train-
ing algorithm.

Here, we propose a dynamical neural network
(DNN) that realizes a dynamical property and has a

network structure with the properties of inertia, vis-
cosity, and stiffness without time delayed input ele-
ments. In a previous study, the proposed DNN was
constructed with a training algorithm that used error
backpropagation method [5]. However, that algorithm
modified only the connecting weights and the property
parameters for the DNN had to be determined by trial
and error. We design a GA-based training [6] both the
connecting weights and the parameters of the DNN.

The validity of the proposed DNN was verified by
identifying periodic functions such as a simple one-
period sine waveform and several periodic sine wave-
forms [7]. In this paper, it is verified by identifying
the time series signals of linear system and nonlinear
system. Simulation results show that the proposed
DNN provides higher performance than the conven-
tional neural network.

2 Structure of DNN

In this paper, a DNN is configured using a neuron
having the properties of inertia, viscosity, and stiffness.
In this neuron model, we assume the image output
from neuron possesses the properties of inertia, viscos-
ity, and stiffness, and that the output is propagated in
the next neuron. The proposed DNN is composed of
three hierarchy layers and the proposed neuron adopts
a hidden layer and an output layer. The structure of
the DNN is shown in Figure 1.

The equations for the DNN are expressed as follows.

yi = ui, (i = 1, 2, · · · , NI) (1)



��� � � � � �	�

・
・
・

・
・
・

・
・
・

wjkwij

Figure 1: Structure of DNN

yj = Kjfj(netj) + Dj ḟj(netj) + Mj f̈j(netj)
(2)

netj =
NI∑

i=1

wijyi, (j = 1, 2, · · · , NJ ) (3)

yk = Kkfk(netk) + Dkḟk(netk) + Mkf̈k(netk)
(4)

netk =
NJ∑

j=1

wjkyj , (k = 1, 2, · · · , NK) (5)

Here, ui shows input value to the DNN, and yi, yj ,
and yk show output values in input, hidden, and out-
put layers, respectively. The Connecting weight from
unit i in input layer to unit j in hidden layer is denoted
by wij . Similarly, wjk is a connecting weight from unit
j in hidden layer to unit k in output layer. The total
sum of products of the connecting weight and the out-
put value is denoted by net. Mj , Dj , and Kj are the
property parameters of inertia, viscosity, and stiffness,
respectively. NI , NJ , and NK are the number of neu-
rons in input, hidden, and output layers, respectively.
The threshold function uses a sigmoid function in the
range of [−1, 1].

3 Training algorithm based on GA

The DNN is trained using a GA in an off-line pro-
cess. Figure 2 shows the flowchart of the evolution
process in the DNN. The evolution algorithm for the
DNN is as follows.

STEP1: Produce the initial DNNs at random. The
connecting weights wij and wjk in the range of
[−1, 1] and the property parameters Mj , Dj , Kj ,
Mk, Dk, and Kk of DNNs in the range of [0, 10]

Initial population
DNNDNN

Evaluation

Selection

Survival

DNNDNN
Parents

DNNDNN

Children

Crossover Mutation

Death

αrate:

Ppressure:

Figure 2: Flowchart of GA-based training

are transformed to the chromosome. The genetic
code is transformed to the binary code (16 bit).

STEP2: Sum all of the fitnesses for the DNNs.

STEP3: Select the parent DNNs by means of roulette
wheel parent selection.

STEP4: Perform a crossover operation for the chro-
mosome to produce new DNNs.

STEP5: Perform a mutation operation for some ad-
ditional new DNNs.

STEP6: Sum all of the fitnesses for the DNNs includ-
ing the new DNNs. Go back to STEP2 until the
evolution process arrives at generation 10,000.

Further information regarding the parameters of the
GA is shown in Table 1.

During the GA-based training process, an error
function E is used to evaluate the performance of each



Table 1: Simulation parameters of GA
Initial DNNs 400 individuals

Selection Roulette wheel parent selection
P = 0.6

Crossover One-point crossover
Mutation Bit mutation

α = 0.10
Final generation 10,000

DNN. The error function E is described by the follow-
ing equation as

E =
1
2

∑

k

e(t)2 =
1
2

∑

k

(d(t)− y(t))2 (6)

where d(t) is the desired signal. The fitness of DNN is
expressed in terms of the inverse of the error function
E. The connecting weights and property parameters
of the DNN are modified in order to maximize the
fitness function determined by the error function in
Equation (6).

4 Numerical simulation

The effectiveness of the proposed DNN is verified
by numerical simulation in order to identify time se-
ries signal. The method by which a time series signal
from an unknown system can be identified is shown in
Figure 3. The DNN is structured to have a single input

Unknown
System

+

−GA

DNN

u(t)

d(t)

y(t)

e(t)

Figure 3: System identification of time series signal

and single output (SISO). The input signal u(t) of the
DNN and the unknown system is a random number of
normal distribution (mean 0.5 and variance 0.5). The
desired signal, namely the training data d(t), is the
output signal of the unknown system.

In numerical simulation, the validity of the pro-
posed DNN is verified by identifying the unknown sys-
tem such as linear system expressed in Equation (7)
and nonlinear system expressed in Equation (8).
• Simulation 1 (linear system)

d(t) = 0.1d(t−1)+0.2d(t−2)+0.3u(t)+0.4u(t−1) (7)

• Simulation 2 (nonlinear system)

d(t) = 0.1d(t− 1) + 0.2d(t− 2) + sin
(πu(t)

4

)
(8)

4.1 Evolution process

In GA simulation, we set the GA parameters shown
in Table 1 and the number of neurons in hidden layer
is 12 units. The input signal u(t) uses 1,000 sampling
data. In simulation 1 and simulation 2, the evolution
processes of the best DNN with the GA-based training
are shown in Figure 4.

0

1

2

3

4

5

6

0 2500 5000 7500 10000

B
es

t f
itn

es
s 

fu
nc

tio
n

Generations

simulation 1
simulation 2

Figure 4: Evolution process

It is observed that either of the evolution processes
provide performance to some extent. The fitness val-
ues increase gradually and the evolutions almost stag-
nate at generation 7,000 in simulation 1 and at gener-
ation 9,000 in simulation 2, respectively.

4.2 Simulation 1 (linear system)

The result of the regenerating signal using the
trained DNN is shown in Figure 5. The figure shows
the regenerating signal in range of [100, 200].

The output of the DNN deviated negligibly from
the desired signal, but the DNN could not cope with
a quick transition.



-0.5

0

0.5

1

1.5

100 120 140 160 180 200

O
ut

pu
t s

ig
na

ls

t

DNN
d(t)

Figure 5: Regenerated result (simulation 1)

4.3 Simulation 2 (nonlinear system)

The result of the regenerating signal using the
trained DNN is shown in Figure 6. The figure shows
the regenerating signals in range of [100, 200].

-0.5

0

0.5

1

1.5

100 120 140 160 180 200

O
ut

pu
t s

ig
na

ls

t

DNN
d(t)

Figure 6: Regenerated result (simulation 2)

The output y(t) of the best DNN deviated negligi-
bly from the desired signal d(t). The DNN trained by
GA obtained good training performance for time se-
ries signal generated from the output of the nonlinear
system.

5 Conclusion

In this paper, the proposed DNN, exhibiting the
effectiveness of dynamical neuron with properties
of inertia, viscosity, and stiffness, was configured.
The training algorithm adopt the GA-based training

method. Simulation results showed that the DNN
trained by the GA realized good training performance
for time series signals generated from either of un-
known systems with linearity and nonlinearity.

In future work, we will try to identify a unknown
system with strong nonlinearity.

References

[1] D. E. Rumelhart, J. L. McClelland, and the PDP
Research Group (1989), Parallel Distributed Pro-
cessing, The MIT Press.

[2] R. J. Williams and D. Zipser (1989), A Learn-
ing Algorithm for Continually Running Fully Re-
current Neural Networks, Neural Computation, 1,
No.2, pp.270–280.

[3] H. Kinjo, K. Nakazono, and T. Yamamoto (1997),
Pattern Recognition for Time Series Signals Us-
ing Recurrent Neural Networks by Genetic Algo-
rithms (in Japanese), Trans. of ISCIE, Vol. 10, No.
6, pp.304–314.

[4] W. Mass and C. M. Bishop (1999), Pulsed Neural
Networks, pp. 16-53, MIT Press.

[5] K. Nakazono, K. Ohnishi, H. Kinjo, and T. Ya-
mamoto (2003), Identification of Periodic Function
Using Dynamical Neural Network, AROB 8th ’03,
Vol.2, pp. 633–636.

[6] Edited by L. Davis (1991), Handbook of Genetic
Algorithms, Van Nostrand Reinhold.

[7] K. Nakazono, K. Ohnishi, and H. Kinjo (2004),
System Identification Using Dynamical Neural
Network with GA-based Training, AROB 9th ’04,
Vol.1, pp. 75–78.


