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Abstract

In this paper we propose a dual gene system us-
ing the recessive gene model, RGM, to solve difficult
multi-variable optimization problems. Genetic algo-
rithms (GAs) are widely applied to many optimiza-
tion problems and usually suffer loss of diversity, lead-
ing to evolutionary stagnation. The dual gene system
is exploited to maintain diversity, significantly boost
evolutionary computation precision and avoid stagna-
tion. We show by computer simulations that RGM
has a higher search efficiency in multi-variable opti-
mization functions. Further, RGM performs better on
small populations than the single, dominant gene ap-
proach for the same computational cost.

Keywords: Recessive gene, Multi-modal function,
Multi-variable optimization, Computational cost.

1 Introduction

Evolutionary computation in optimization relies on
processes loosely based on natural selection, cross-over
and mutation, that are repeatedly applied to a popu-
lation of binary strings which represent potential solu-
tions. Most GAs experience problems of convergence
due to loss in diversity [1]. There is need to devise
ways of avoiding the mechanism of evolutionary stag-
nation.

We used the basic information on Mendelian genet-
ics to illustrate that a recessive characteristic might
significantly affect a closed population [2]. In observ-
ing living organisms, characteristics of the offspring do
not always resemble those of parents. A dual gene sys-
tem exists whereby some alleles are dominant hence al-
ways expressed, while some are recessive, that is, only
expressed under certain conditions. However, the indi-
vidual preserves the recessive gene, which is sent to the

next generation, thus maintaining the diversity of the
characteristics of the living organism. RGM utilizes
both dominant and recessive genes in the cross-over
and mutation operations in the mating phase of the
GA. To confirm the efficiency of the scheme we applied
RGM to two multi-variable optimization problems.

The structure of this paper is as follows: in Section
2 we present the RGM and in Section 3 we describe
the test functions. Simulation results are detailed in
Section 4 and a discussion makes up section 5. Finally,
we draw some general conclusions in Section 6.

2 Recessive Gene Model, RGM
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Figure 1: Schematic of the Recessive Gene Model

Figure 1 shows the structure of the double gene sys-
tem. In usual GA systems only the dominant genes
appear, hence in the first generation of two individ-
uals F1 and F2, only the dominant characteristics A



and B appear, respectively. In the second generation,
each of the individuals S1, S2, S3 and S4 will display
two chromosomes: 1 dominant and 1 recessive. As an
example, F1 and F2 will produce two offspring, S3 and
its complement, S3′, in the second filial generation si-
multaneously. Offspring S3 will have the chromosomes
BC (dominant) and AD (recessive), while S3′, has CB
and DA as dominant and recessive, respectively.

P is the probability that a recessive chromosome
is selected to be a dominant chromosome in the next
generation. In the special cases of P = 0% and P =
100% then the offspring will be S1 and S4 respectively.
The essence of the dual gene system is to provide a
larger variety of offspring for the search.

3 Problem Formulation

Our two test functions were Easom’s and Schaffer’s
F6, from the classical benchmark similar to those de-
fined by Kenneth De Jong [3], [4], [5].

3.1 The Easom Unimodal Function

For this function the global minimum has a small
area relative to the search space; the function was in-
verted for minimization, and takes the form:

f(x, y) = − cos(x) cos(y)e−((x−π)+(y−π))
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Figure 2: Easom function in 3-D

Figure 2 shows a 3-D depiction of the Easom func-
tion. The analytical global minimum of the Easom
function is -1 when (x, y) = (π, π).

3.2 Schaffer’s F6 Multi-modal Function

This parametric optimization problem is multimodal,
represented by the equation:

f(x, y) = 0.5 +
sin2(

√
x2+y2)−0.5

1+0.001(x2+y2)2
.

The function is a two-parameter ”ripple”, like the
waves in a pond caused by a pebble.
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Figure 3: Schaffer’s F6 function in 3-D

Figure 3 shows Schaffer’s F6 function; the center-
most ring represents the circular global optimum.

Table 1: Analytical results for Schaffer’s F6

Optima r f(x, y)

Global π

2
0.996989

1st local 3π

2
0.838081

2nd local 5π

2
0.606185

3rd local 7π

2
0.532483

Table 1 gives the analytical values for the various
maxima. For each set of values at the various optima,
the relation r =

√

x2 + y2 exists.

4 Simulation Results

4.1 GA Parameters

A random generation of (x, y) values in Euclidean
space was used in the GA search for both functions.

Table 2: Constant parameters

Binary bit length, B 16

Selection pressure, parents Pp 0.5

Selection pressure, children Pc 0.6

Selection method Roulette wheel

Crossover 2-point

Table 2 shows the constant parameters in the GA
search. The sample size, N , was kept at 50 for most
of the simulations.

Table 3: Variables
Percentage of recessive gene, P% 0 < P < 100

Rate of mutation, M% 0 < M < 100

No. of generations, G 0 < G < 100

Sampling population, N 20 < N < 100

Table 3 shows the variables utilized in the GA
search.



4.2 Searching performance results for the
Easom function
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Figure 4: Recessive gene performance for the Easom
function.

Figure 4 shows the searching performance for the
Easom function. In the case of P = 0%, only us-
ing dominant chromosomes, success rate is lower than
for for the case of the recessive gene, when P 6= 0%;
however, when P is too large the search is not very ef-
ficient. Mutation plays a significant role in the search.
It is seen that in the absence of mutation, for the case
M = 0%, then the search improves with P . Search
space was in the whole region, (x, y) = [-10,10].

 0

 20

 40

 60

 80

 100

 20  30  40  50  60  70  80  90  100

S
 [%

]

N

P = 0%
P = 10%
P = 20%
P = 30%

Figure 5: Effect of varying sampling population on
performance for the Easom function. (M = 20%).

From Figure 5 we can observe that though the
search performance improves with increase in the pop-
ulation size, the recessive gene performs better at low
populations than for the case where P = 0%.
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Figure 6: Effect of generations and recessive gene on
efficiency for the Easom function. (M = 20%).

Figure 6 shows the mean of the best values of the
function on 100 trials per generation. It gives a strong
indication of the advantage of the recessive gene in
this unimodal search, where the attainment of the best
mean value, Em, of the function is faster when P 6= 0%
and there is stagnation when P = 0%. For the Ea-
som function, rate of convergence to solution is fastest
when P = 20%.

4.3 Searching performance results for
Schaffer’s F6 function
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Figure 7: Recessive gene performance, Schaffer’s F6.

Figure 7 shows that success in search for the global
optimum is best when P 6= 0%. Mutation is essential
in this multimodal search, as there is practically no
search when M = 0%. Mutation enhances the search
by offering diversity among the population. Search
for the global optimum was investigated from an initial
sampling in the range [11,13] of the global search space
[-15,15] for (x, y) values.
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Figure 8: Effect of varying sampling population on
performance for Schaffer’s F6 function. (M = 20%).

Figure 8 shows that though increasing N greatly
improves the search, RGM performs relatively well
with small population when P 6= 0% and it is inade-
quate when P = 0%.
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Figure 9: Effect of generations and recessive gene on
efficiency for Schaffer’s F6 function. (M = 20%).

Figure 9 indicates the advantage of using the re-
cessive gene as convergence is influenced by P ; for
P = 0% there is stagnation at some local optima.

5 Discussion

Using RGM, we compared the performance of the
GA driven by a gradually increasing recessive gene to
the dominant case. Figures 4 and 7 are the basis of
our research; for the Easom function the success rate
is lower when using only dominant chromosomes than
for P 6= 0%. However the search performance is de-
graded when P is too large. It can be inferred that for

the unimodal search the recessive gene performs the
function of mutation. For the Schaffer’s F6, search in-
proves with P ; mutation is integral to the evolution as
there is practically no success for M = 0%.

Figures 5 and 8 show that for the respective func-
tions, though N greatly influences the search, there
is inferior evolutionary success for P = 0%. GA effi-
ciency is enhanced by a large N , though this requires
more memory and takes longer to converge. Since
computational cost, Cc, in terms of time and mem-
ory, is in direct proportion to N , then Cc for N = 100
should be twice the Cc for N = 50. It can be seen
from Figures 5 and 8 that performance is superior for
the case P 6= 0%, N = 50 than for P = 0%, N = 100.

Figures 6 and 9, for Easom and Schaffer’s F6 re-
spectively, show that the rate of convergence is high
for P 6= 0% and that there is stagnation when P = 0%.

Maintaining diversity in the GA search ensures high
efficiency yet avoids quick convergence and stagnation.
RGM ensures accurate convergence at low N and this
is desirable for memory storage during computations.
However, RGM may be computationally expensive.

6 Conclusions

In this paper, we have shown that RGM avoids stag-
nation due to diversity, works very well at low sam-
pling populations and that the recessive gene performs
the function of mutation. Further, performance with
recessive chromosomes is superior to the purely dom-
inant chromosomes case. We believe the management
of the computational cost could be further improved.
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