
Improvement of Real-coded Genetic Algorithms
for Optimization Problems

Hiroshi Kinjo, Hiroki Nakanishi and Tetsuhiko Yamamoto Duong Sam Chau
kinjo,hiroki,yamamoto@mibai.tec.u-ryukyu.ac.jp Faculty of Electric Mechanics

Faculty of Engineering, University of the Ryukyus Hanoi Agricultural University
Nishihara, Okinawa 903-0213, Japan Gialam, Hanoi, Vietnam

Abstract

Genetic algorithms (GAs) are widely used in solv-
ing optimization problems. In this paper, we present
a crossover method used in real-coded GAs for
multivariable optimization problems. A well-known
crossover operator of real-coded GAs is the blend
crossover (BLX). The BLX has a range parameter that
determines the offspring production range. The search
performance of the GA depends on the value of the
range parameter. However, determination of the range
parameter is sometimes difficult. In this paper, we
propose a crossover operator for real-coded GAs that
is a close-to-parent offspring. The crossover is based on
the idea that offspring should be close to their parents.
In order to improve the evolution performance, we ap-
plied a mutation operator to the real-coded GA. Simu-
lation shows that the use of a close-to-parent crossover
with the mutation operator effectively improves search
performance.

Keywords: Real-coded GA, Crossover method,
Close-to-parent offspring, Optimization problem.

1 Introduction

Recently, genetic algorithms (GAs) have been ap-
plied widely and effectively in various fields [1]-[3]. The
most useful property of GAs is their ability to solve
search and optimization problems with very little re-
quired information about the problems. The perfor-
mance of GAs depends, to a great extent, on the per-
formance of the crossover operator used. The crossover
operation is performed upon the selected chromosome.
The crossover operates on two chromosomes at a time
and generates offspring by combining the features of
both chromosomes. A chromosome is usually a bi-
nary bit string, but not necessarily. There are several
different variants of basic GAs. It is possible to use
real-coded (or floating-point) genes and actually, sev-
eral methods have been presented that use real-coded

genes [4]. The crossover operators of the real-coded
GA called the blend crossover (BLX-α). The BLX
has a range parameter that determines the production
ranges of the offspring. The evolution performance of
GAs is dependent on the value of the range parameter.
Selection the range parameter is determined by trial
and error. However, the determination of the range
parameter is sometimes difficult.

The BLX is an offspring production method using a
random number of uniform distributions based on the
intervals of two parents and a range parameter. That
is, the method is not based on the parents them selves
but on the intervals between parents. We consider that
offspring production should be based on the parents
them selves. Based on the above-mentioned idea, in
this paper, we present a new method, i.e., a close-to-
parent crossover. Furthermore we applied a mutation
operator to the crossover system to improve the search
performance for optimization problems.

In section 2, we describe the close-to-parent off-
spring production method. In section 3, we describe
the search performance of the crossover for three two-
variable functions. In section 4, we describe the evolu-
tion performance for a neural network training prob-
lem. In section 5, we conclude this paper.

2 Close-to-parent offspring

Figure 1 (a) shows, a conventional crossover, the
BLX. In the figure, offspring are produced using ran-
dom values on a uniform distribution in the range of
[p1 − αI, p2 + αI], where p1 and p2 are the real val-
ues of the parents and α is the range parameter. α
determines the search area of the offspring.

Figure 1(b) shows, the proposed crossover, that is,
the close-to-parent offspring (CPO). CPO also has a
range parameter α that determines the offspring pro-
duction range based on each parent. For producing
offspring using CPO, two individuals are produced us-
ing random values that have uniform distributions in



P1 P2

I

αI αI

(a) BLX

P1 P2

I

(b) CPO

αI αI αI αI

P1 P2

I

(c) Mutation of P

αI αI

I

P1’

1

Fig. 1 Offspring production methods

the ranges of [p1−αI, p1 +αI] and [p2−αI, p2 +αI].
Figure 1 (c) shows a mutation of the CPO. In the

figure, p′1 denotes the center of the range of the muta-
tion of parent p1. The range of the offspring applied
to the mutation is [p′1 − αI, p′1 + αI].

3 Two-variable optimization problem

In this section we investigate the search perfor-
mance of the proposed method for optimization prob-
lems for three two-variable functions: Sphere function,
Rosenbrock function, and Rastrigin function [5].

The search performance is measured using success-
ful evolution rates obtained from the minimum values
of the functions in the GA.

In this test, we use the following GA parameters:
population size is Np = 100 and generation number is
limited to 300. The produced offspring is 60% of the
population Np. The parents selection is the roulette
wheel selection.

The sphere function, which is the simplest case in
this test, is described by the following equation.

f(x, y) = x2 + y2, x, y ∈ [−1.5, 1.5] (1)

The minimum value of this function is 0.0 and occurs
when (x, y) = (0, 0).

Figure 2 shows the evolution performance of the
Sphere function. In the figure, the CPO1 line shows

0

20

40

60

80

100

0 0.5 1.0 1.5 2.0

S
uc

ce
ss

fu
l e

vo
lu

tio
n 

[%
]

α

BLX

CPO1

CPO2

Fig. 2 Evolution performance of Sphere function

0

20

40

60

80

100

0 0.5 1.0 1.5 2.0

S
uc

ce
ss

fu
l e

vo
lu

tio
n 

[%
]

α

BLX

CPO1

CPO2

Fig. 3 Evolution performance for Rosenbrock
function

the result of the cross-to-parent offspring and the
CPO2 line shows the results of CPO with mutation,
where the mutation rate is 20 %. We define a success-
ful evolution as that having a minimum value of the
function f(x, y) < 0.001. The lines of successful rate
in the figure show the mean value of 1000 trials. We
can see that the range of α in CPO2 which has a good
performance is wider than that in BLX.

Figure 3 shows the evolution performance for the
Rosenbrock function. The Rosenbrock function is de-
scribed by the following equation.

f(x, y) = 100(x−y2)2 +(y−1)2, x, y ∈ [−0.25, 1.25]
(2)

The minimum value of this function is 0.0 and occurs
when (x, y) = (0, 0). We can see that the rate of suc-
cessful evolution of CPO1 is approximately two times
better than that of BLX at α = 0.3. From the figure,
the result of CPO2, i.e., with the mutation operator,
is poor compared with the result obtained when mu-
tation operator is not used. In this case the mutation
does not have a good effect on search performance.

Figure 4 shows the evolution performance for the
Rastrigin function. The Rastrigin function, which is
the most complicated function in this research, is de-
scribed by the following equation.

f(x, y) = 20 + {x2 − 10 cos(2πx)}
+{y2 − 10 cos(2πy)}, x, y ∈ [−0.25, 1.25](3)



0

20

40

60

80

100

0 0.5 1.0 1.5 2.0

S
uc

ce
ss

fu
l e

vo
lu

tio
n 

[%
]

α

BLX

CPO1

CPO2

Fig. 4 Evolution performance for Rastrigin function

0

20

40

60

80

100

0 0.5 1.0 1.5 2.0

S
uc

ce
ss

fu
l e

vo
lu

tio
n 

[%
]

α

Fig. 5 Evolution performance for Rastrigin function
using CPO with sign mutation

The minimum value of this function is 0.0 and occurs
when (x, y) = (0, 0). We can observe that the COP2
has a better search performance than BLX and CPO1.
In the case of the Rastrigin function, it is difficult to
search the solution because the surface of the function
is in the shape of valleys and peaks [5]. We consid-
ered that a mutation more effective and severer than
the range mutation described in Fig. 1 (c) is required.
Figure 5 shows a result of CPO with a sign muta-
tion. The sign mutation means a change in the sign
of the real value of the offspring. This figure shows
the result when the mutation rate is 20 %. We can
see that CPO with a sign mutation has a better evolu-
tion performance than the previous results of the three
methods shown in Fig. 4.

4 Neural network training problem

This section presents simulation results of neural
network training problems. The training of neural
network is known as a nonlinear multivariable opti-
mization problem.

In order to obtain results comparable to those of
the BLX, We should select the well-known exclusive-
or (XOR) problem.

In this test, we use GAs for training a XOR net-
work. For clearer results, we examine the XOR net-

0

20

40

60

80

100

0 0.5 1.0 1.5 2.0

S
uc

ce
ss

fu
l e

vo
lu

tio
n 

[%
]

α

Nh=3
Nh=5

Nh=7

(a) BLX

0

20

40

60

80

100

0 0.5 1.0 1.5 2.0

S
uc

ce
ss

fu
l e

vo
lu

tio
n 

[%
]

α

Nh=3

Nh=5Nh=7

(b) CPO1

0

20

40

60

80

100

0 0.5 1.0 1.5 2.0

S
uc

ce
ss

fu
l e

vo
lu

tio
n 

[%
]

α

Nh=3

Nh=5Nh=7

(c) CPO2
Fig. 6 Evolution performance for neural network

(Np = 25)

works for various population sizes of GAs: Np =
25, Np = 50 and Np = 100. In each case of Np, we
also change the number of neurons in the hidden layer
of the network: Nh = 3, Nh = 5 and Nh = 7. The
performance results of the XOR network training are
shown in Figs. 6-8; in this training we use GAs with
crossover operators: BLX, CPO1 and CPO2. We can
see that, in all of the cases, CPO achieved better per-
formances than BLX could. Moreover, in CPO, the
range of α, which has a good performance, is signif-
icantly wider than that in BLX. That is, CPO could
obtain good results several times better than those of
BLX. We can also observe that the addition of mu-
tation effects the good results of the neural network
training problem.



0

20

40

60

80

100

0 0.5 1.0 1.5 2.0

S
uc

ce
ss

fu
l e

vo
lu

tio
n 

[%
]

α

Nh=3

Nh=5

Nh=7

(a) BLX

0

20

40

60

80

100

0 0.5 1.0 1.5 2.0

S
uc

ce
ss

fu
l e

vo
lu

tio
n 

[%
]

α

Nh=3
Nh=5Nh=7

(b) CPO1

0

20

40

60

80

100

0 0.5 1.0 1.5 2.0

S
uc

ce
ss

fu
l e

vo
lu

tio
n 

[%
]

α

Nh=3
Nh=5Nh=7

(c) CPO2
Fig. 7 Evolution performance for neural network

(Np = 50)

5 Summary

Improving crossover operator in GAs is an area of
active research for developing GAs. In this paper, we
presented a new method of improving real-coded GAs
by examining new search spaces of the crossover op-
erator. The simulations show that GAs can achieve a
good performance by changing search spaces to gener-
ate two close-to-parent offspring.

References

[1] D. E. Goldberg, Genetic Algorithms in Search, Op-
timization & Machine Learning, Addison-Wesley,
1989.

0

20

40

60

80

100

0 0.5 1.0 1.5 2.0

S
uc

ce
ss

fu
l e

vo
lu

tio
n 

[%
]

α

Nh=3
Nh=5Nh=7

(a) BLX

0

20

40

60

80

100

0 0.5 1.0 1.5 2.0

S
uc

ce
ss

fu
l e

vo
lu

tio
n 

[%
]

α

Nh=3Nh=5
Nh=7

(b) CPO1

0

20

40

60

80

100

0 0.5 1.0 1.5 2.0

S
uc

ce
ss

fu
l e

vo
lu

tio
n 

[%
]

α

Nh=3Nh=5
Nh=7

(c) CPO2
Fig. 8 Evolution performance for neural network

(Np = 100)

[2] L. Davis, Hand Book of Genetic Algorithms, Van
Nostrand Reinhold, 1991.

[3] M. Gen and R. Cheng, Genetic Algorithm and En-
gineering Design, Wiley-Interscience, 1997.

[4] L. J. Eshelman and J. D. Schaffer, “Real-Coded
Genetic Algorithms and Interval-Schemata” Foun-
dations of Genetic Algorithms 2, Edited by L. Dar-
rell Whitley, Morgan Kaufmann Publishers, 1993.

[5] H. Okamura, K. Kitasuka and T. Dohi, “Perfor-
mance Evaluation of Genetic Algorithms Based
on Markovian Analysis - Evaluation by Relaxation
Time and Application to Real-Coded Genetic Al-
gorithms,” Transactions of the ISCIE, Vol. 16, No.
7, pp. 303-312, 2003. (in Japanese)


