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Abstract

Researches on a planning, which includes the uncer-
tainty that a result to a single solution cannot be de-
termined uniquely, have been done. In such problems,
a solution needs to be evaluated based on the uncer-
tainty. In this paper, as the evaluation function based
on such uncertainty, expected value estimated using
the Monte Carlo Method is suggested. Moreover, the
partially exhaustive exploration Monte Carlo Method
is proposed to improve the accuracy of the estima-
tion. As an example of the problem, the Tour Plan-
ning Problem is suggested and the proposed method
is applied to this problem. From experimental results,
it has been confirmed that the accuracy is improved
by the proposed method. The proposed method can
estimate the expected value as accurately as the stan-
dard Monte Carlo Method using the fewer samples.
There is a probability of improving the effectiveness
of searching because more solutions can be evaluated.
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1 Introduction

Researches on a planning, such as the automatic
decision-making by the software or the combinatorial
optimization problem containing probabilistic param-
eter, have been done [1][3][4]. These problems include
the uncertainty that a result cannot be determined
uniquely. In short, in such problems, a single solution
may produce different results. Therefore, a solution
needs to be evaluated based on the uncertainty. In the
case where all possible results and each probability are
known, the simplest evaluation function includes the
expected value. However, if the number of possible
results is large, it is difficult to calculate the expected
value actually because of the time constraints.

In this paper, we suggest the expected value esti-
mated using the Monte Carlo Method (MCM) [2] as
the evaluation function based on the uncertainty and
propose the partially exhaustive exploration Monte
Carlo Method to improve the accuracy of the estima-

tion using a few samples. Furthermore, we suggest the
Tour Planning Problem as an example including such
uncertainty. We apply the proposed method to this
problem.

The remainder of the paper is organized as follows:
In section 2, the Tour Planning Problem is formu-
lated. In section 3, the partially exhaustive explo-
ration Monte Carlo Method is proposed. In section
4, we apply the proposed method to the Tour Plan-
ning Problem and discuss the effectiveness. Finally,
concluding remarks are given in Section 5.

2 Tour Planning Problem
2.1 Overview

The purpose is to plan a tour, which maximizes
the total score within the time limit, when there are
multiple tourist facilities. In traditional model, it is
assumed that the each time cost involved with trans-
ferring between the facilities or staying at each facility
is constant. We introduce the probability distributions
as each time cost. It cannot be defined that whether
a tour exceeds the time limit or not because each time
cost is not defined uniquely.

We compared two evaluation functions about a tour
in the preliminary experiment. One is the expected
score. The other is the score, which is got when it is
assumed that each cost is the average of given prob-
ability distribution. From experimental results, it is
confirmed that using the expected value can search
for a tour, which rarely exceeds the time limit and
gets high score averagely. Therefore, we formulate the
Tour Planning Problem as the combinatorial optimiza-
tion problem aiming at maximizing the expected score.

2.2 Formulation

A set of node, which corresponds to a tourist facil-
ity, is denoted by V, and a set of time is denoted by
T.

Vo = {Ulv"'avn}a (1)
T = {tfte=ti+(r—1)-tr =12}, (2)



where 0t is unit time. The v; has the opening time
o0; and closing time e; (0;,€; € T'). A set of time cost
involved with moving from v; to v; and staying at v;
is denoted by W;; and W; (v;,v; € V), respectively.

Wi = {wig|wi g41 = wix + 0tk =1,---,m;}. (3)
Wij - {wijk|wi,j,k+1 = Wijk + ot,k=1,--- 7mij}. (4)

The wv; has the probability distribution denoted
by pi(wir) Ok pi(wir)=1, pi(wix)>0), which indi-
cates the probability of staying at wv; for w.
Moreover, the probability distribution denoted by
Pij(wiji) (30, pij(wijn)=1, pij(wije)>0), which indi-
cates the probability of taking w;;; to move from v; to
vj, is defined. Given starting point vs, goal vg, depar-
ture time Dy and time limit Dy, the objective of Tour
Planning Problem is to maximize
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Equation (5) represents the expected score. The ma-
trix (6) represents a tour. If a,; = 1, the u-th node
that a client visits is v;. Equation (7) represents the
total score. In this model, the score for the case of ex-
ceeding the time limit is set to zero because we assume
the time limit as the departure time of the airplane or
the train that a client will take. Therefore, if to exceed
the time limit is allowed somewhat, it is possible that
not zero but the function of a certain penalty is used as
such score. Equation (8) is a score of v; in the time ¢.
Equation (9) represents a direct product consisted of
combination of time cost. As (10) shown, b (€ B) rep-
resents the combination of arbitrary costs. Where ¢;
and ¢;; are arbitrary time costs determined according
to p;(wix) and pi;(wsjr). The value of (11) is occur-
rence probability of b. In short, p(b) is a probability
that arbitrary ¢; and ¢;; are selected at the same in-
stant. Equation (12) represents the time that a client
arrives at &-th node. The value of (13) is the total
number of node that a client visits. The value of (14)
represents the number of u-th node that a client visit.
Equations (15)-(17) are the constrained conditions.

3 Proposed method
3.1 Estimation of expected score

Because it is difficult to search for the optimum
solution, we search the approximate solution by the
heuristic search. However, if the expected score is cal-
culated actually, it takes time granted that heuristic
search is used. Therefore, we propose the expected
score estimated by the MCM as the evaluation func-
tion. Some combinations of ¢; and ¢;;, which is b, is
selected randomly according to p;(wix) and p;;(wijk)
as samples. Then, the MCM estimates the expected
score. The number of samples is denoted by M. The
M has to be set a low value because of the time con-
straints. Therefore, we propose the partially exhaus-
tive exploration Monte Carlo Method to improve the
accuracy of the estimation using a few samples.

3.2 Partially exhaustive exploration
Monte Carlo Method

This method uses the feature that the b with the
high occurrence probability can be enumerated with-
out exploring all combinations of time costs. As above,
the p(b) is calculated as a product of p;(¢;) and p;;(c;j)-
Therefore, a certain threshold is set when the p(b) is
calculated. If a product is below the threshold in the
course of calculation of p(b), the rest of all the calcu-
lation about the combination is omitted. By this tree
pruning, the cost for enumeration can be reduced.

The procedure to estimate the expected score about
an A is as follows. First, a certain threshold is deter-
mined and the set B is divided into two sets. One



is the set of b, which has the higher p(b) than the
threshold. The other is the set of other b. The former
is denoted by B and the latter is denoted by B(2).
The number of samples used for estimation about B
is My and about B® is Ms. M is the sum of M; and
M. Secondly, all b contained in B are explored
exhaustively. Therefore, M; equals |[BM)|. The Fj,
which is answer of exhaustive exploration about B,
is calculated.

Er= ) (S(4,0) x p(b)) . (18)

beBM)

Thirdly, the MCM estimates the expected score about
B® . The M, samples are generated randomly ac-
cording to p;(c;) and p;;(c;;). They are denoted by &,.
However, the p(§,;) may be higher than the threshold.
Such sample cannot be used. Therefore, the number
of the samples, which can actually be used, may be
less than Ms. The number of samples, which can be
used, is denoted by Mi™¢. The Es, which is expected
score estimated about B, is calculated.

Ivjtrue
1 < u
Bz = g 2 SAG). (M <Mz) (19)
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Finally, the expected score F is calculated.

E=Ei+ Y p(b)-E>. (20)
beB()

In the preliminary experiment, it is confirmed that
the larger there is deviation between the occurrence
probabilities, the more this method is effective. When
there is not deviation so much, the effect cannot be
expected. However, because it is difficult to define that
the Tour Planning Problem is contained in which, it
is necessary to investigate.

4 Experiment
4.1 Experimental setup

We design the model based on fourteen tourist fa-
cilities in Sapporo city, Japan. The p;;(w;;i) is deter-
mined as follows. First, standard time cost involved
with moving from v; to v;, which is denoted by p;;, is
calculated using the store-bought map software. Sec-
ondly, o;; is calculated as ;; divided by K. This K
is parameter to set the variation of the time cost. Fi-
nally, pi; (w;jx) is determined by dividing a normal dis-
tribution N(u;j,0;;) according to 6t as Figure 1. The
pi(wix) is determined in the same way as p;;(wijk)-
The standard time cost u; is determined referring to
some guidebooks. Each o; and e; is the actual value.
In this experiments, §; = 5, and K = 15 are used.
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Figure 1: The calculation of the occurrence probability

Table 1: The three kinds of setups about client
vs | vg | Ds D,
Client 1 | 13| 0 | 840 | 1380
Client 2 | 0 0 | 480 | 1080
Client 3 | 0 | 13 | 540 | 1260

4.2 Comparison with the standard MCM

To compare the accuracy of estimation, the ex-
pected score is estimated about one thousand solu-
tions each ten thousand times by each MCM. Then, to
evaluate the accuracy, a error rate to a true expected
score is calculated. Three kinds of client are prepared
as shown in Table 1. In the setting of client 1, some
nodes will be closed depend on the time. In the setting
of client 2, some nodes do not stay open at first. In the
setting of client 3, more time can be used than other
settings. Furthermore, two kinds of settings about M,
M=200 and M=500 are used. In this paper, we used
the M as an indicator of the calculation cost. Because
it is thought that the computation time depends on
the feature of the problem or efficiency of programs,
we fixed not the computation time but M.

4.3 Results of the first experiment

Figure 2 - 7 show the average error rate. The “1.0”
in figures represents the standard MCM. About clients
1 and 2, the proposed method could estimate the ex-
pected score more accurately than the standard MCM.
In the case of M=500 of client 1, accuracy was im-
proved about one to two percent. In view of the fact
that the Standard MCM can estimate the expected
score comparatively accurately, it is thought that the
accuracy was improved considerably. In other words,
the proposed method can estimate the expected score
as accurately as the standard MCM using the fewer
samples. Furthermore, the accuracy differs depending
on the balance between the threshold and the num-
ber of samples M. Therefore, the threshold is very
important. About client 3, there is not so much of a
difference between the proposed method and the Stan-
dard MCM. Because client 3 can visit more nodes, the
combination of time cost increases. Each p(b) becomes
low and almost all p(b) becomes lower than a thresh-
old. As a result, the proposed method is not so differ-
ent from the standard MCM. Next, client 1 that the
accuracy is most improved is considered selectively.
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Figure 3: The average
error rate about client
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4.4 Comparison of effectiveness of search-
ing

To discuss the effectiveness of searching by each
method, we search for a tour 500 times actually about
the setting of client 1 and compare the tours, which are
selected finally. We use the simulated annealing (SA)
because of the ease of implementation. The param-
eters are determined in the preliminary experiments.
A tour is expressed as permutation of the visited node
number.

4.5 Results of the second experiments

Figure 8 shows the average of true expected scores
of 500 tours selected by 500 trials of SA. There is not
so much of a difference between the two methods. It is
thought that a tour, which finally is selected, is much
the same because the expected score is estimated com-
paratively accurately whichever method. However, as
stated in section 4.3, the proposed method can esti-
mate the expected score as accurately as the standard
MCM using the fewer samples. As a result, more so-
lutions can be evaluated. Therefore, there is a prob-
ability of improving the effectiveness of searching by
the proposed method. Figure 9 shows the average of
probability that a selected tour exceed the time limit.
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The selected tours rarely exceed the time limit. The
computation time of the proposed method is similar
to that of the standard MCM within four seconds.

5 Conclusion

In this paper, we suggest the expected value es-
timated using the MCM as the evaluation function
based on the uncertainty. Moreover, the partially
exhaustive exploration Monte Carlo Method is pro-
posed to improve the accuracy of the estimation. Fur-
thermore, the Tour Planning Problem is suggested
as an example of the problem including the uncer-
tainty. From results of experiments, it has been con-
firmed that the accuracy is improved by the proposed
method. In other words, the proposed method can
estimate the expected value as accurately as the stan-
dard MCM using the fewer samples. There is a prob-
ability of improving the effectiveness of searching be-
cause more solutions can be evaluated. Moreover, a
reasonable tour, which rarely exceeds the time limit
and gets high score averagely, can be searched by using
the expected score as the evaluation function. As the
future works, we have to design the means to adjust a
threshold automatically. Moreover, we have to discuss
a case that it is difficult to estimate an expected value.

Acknowledgment

Our special thanks are due to Mr. Koichi Kuru-
matani, National Institute of Advanced Industrial Sci-
ence and Technology for considerable cooperation and
valuable advice.

References

[1] E.L.Lawler, et al. The TRAVELING SALESMAN

PROBLEM, October, 1986.
[2] Arnaud Doucet, et al. Sequential Monte Carlo

Methods in Practice, Springer-Verlag, January

2001.
[3] M. Wellman, et al. Designing the Market Game for

a Trading Agent Competition, IEEE INTERNET
COMPUTING, March/April (2001. 8) :p43-51

[4] Michael P. Wellman, et al. Path Planning under
Time-Dependent Uncertainty™, the Eleventh Con-
ference on Uncertainty in Artificial Intelligence,
August, 1995.



