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Abstract
Recently, particle filters have attracted attentions

for nonlinear state estimation. In this approaches, a
posterior probability distribution of the state variable
is evaluated based on observations in simulation using
so-called importance sampling. We proposed a new fil-
ter, Evolution Strategies based particle (ESP) filter to
circumvent degeneracy phenomena in the importance
weights, which deteriorates the filter performance, and
apply it to simultaneous state and parameter estima-
tion of nonlinear state space models. Results of nu-
merical simulation studies illustrate the applicability
of this approach.
Keywords. Nonlinear filtering, particle filters,
Bayesian approach, evolution strategies, importance
sampling, selection.

1 Introduction

The problem of state estimation of dynamic systems
using a sequence of their noisy observations has been
an active research area in control system sciences for
many years. We focus here on Bayesian estimation ap-
proaches, that is, inference on the unknown state can
be performed according to the posteriori probability
density function (pdf), which is obtained by combin-
ing a prior pdf for the unknown state with a likelihood
function relating to the observations. When observa-
tions come sequentially in time, recursive state estima-
tion is often interested, where the evolving posterior
pdf is evaluated recursively in time. However, in many
realistic problems, state space models include nonlin-
ear and non-Gaussian elements that preclude a closed
form of expression for the posteriori pdf, and hence
many approximations have been proposed such as the
extended Kalman filter (EKF) and Gaussian sum fil-
ter [6]. Recent progress of computing ability allowed
to the rebirth of Monte Carlo integration and its ap-
plication of Bayesian filtering, or Monte Carlo filters.
A class of Monte Carlo filters, known as “particle fil-
ters” [4, 2] is discussed here. In this approach, the inte-
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grals in Bayes’ rule is approximated by a weighted sum
based on the discrete grids with associated weights
sequentially chosen by the importance sampling. A
common problem in the particle filter is the degener-
acy phenomenon, where almost all importance weights
tend to zero after some iteration and a large compu-
tational effort is wasted to updating the particles with
negligible weights. In order to resolve this difficulty,
several modifications have been proposed such as re-
sampling particle filter (SIR) [5] that introduces a re-
sampling steps. Applying the concept of Evolution
Strategies [7], we also developed the Evolution Strate-
gies based prticle (ESP) flter [8]. In this paper, the
ESP filter is applied to simultaneous state and pa-
rameter estimation of nonlinear state space models.
Numerical simulation studies have been conducted to
exemplify the applicability of this approach.

2 Particle Filters

Consider the following nonlinear state space model.

xk+1 = f(xk, vk) (1)
yk = g(xk, wk) (2)

where xk and yk are the state variable and observa-
tion, respectively, f and g are known possibly non-
linear functions, vk and wk are independently identi-
cally distributed (i.i.d.) system noise and observation
noise sequences, respectively. We assume vk and wk

are mutually independent. The main objective here
is to find the best estimate of the state variable xk in
some sense based on the all available data of observa-
tions y1:k = {y1, y2, . . . , yk}. We can solve the problem
by calculating the posteriori pdf of the state variable
xk of time instant k based on all the available data of
observation sequence y1:k.

The posteriori pdf p(xk|y1:k) of xk based on the
observation sequence y1:k satisfies the following recur-
sion:

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (3)

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
(4)



with a prior pdf p(x0|y0) ≡ p(x0) of the initial state
variable x0. Here normalizing constant

p(yk|y1:k−1) =
∫

p(yk|xk)p(xk|y1:k−1)dxk

depends on the likelihood p(yk|xk), which is deter-
mined by the observation equation (2).

Since a closed form solution of recursions (3) and
(4) is not admitted except in very restrictive cases in-
cluding linear Gaussian state space models, where the
Kalman filter [1] can be applied, some approximations
should be introduced such as the extended Kalman fil-
ter (EKF)[6] and particle filters [4, 2]. Since EKF uses
a linearization technique based on a first order Tay-
lor expansions of the nonlinear system and observa-
tion equations about the current estimate and approx-
imates the posteriori pdf to be Gaussian, it can never
describe the true non-Gaussian density well. Particle
filters approximate the true posteriori pdf p(xk|y1:k)
by a large set of n � 1 particles {x(i)

k , (i = 1, . . . , n)},
where each particle has an assigned relative weight,
{w(i)

k ,(i = 1, . . . , n)}, w
(i)
k > 0,

∑n
i=1 w

(i)
k = 1 as fol-

lows:

p(xk|y1:k) ≈
n∑

i=1

w
(i)
k δ(xk − x

(i)
k ) (5)

where δ(·) is Dirac’s delta function (δ(x) = 1 for x = 0
and δ(x) = 0 otherwise).

Here, the particles are generated and associated
weights are chosen using the principle of “importance
sampling”. If the samples x

(i)
k in (5) were drawn from

an importance density q(x(i)
k |y1:k), then the associated

normalized weights are defined by

w
(i)
k ∝

p(x(i)
k |y1:k)

q(x(i)
k |y1:k)

. (6)

When the importance density q(xk|y1:k−1) is chosen
to factorize such that

q(xk|y1:k) = q(xk|xk−1, y1:k)q(xk−1|y1:k−1), (7)

we can obtain samples x
(i)
k by augmenting each of

the existing samples x
(i)
k−1 sampled from the impor-

tance density q(xk−1|y1:k−1) with the new state sam-
pled from q(xk|x(i)

k−1, y1:k).
Noting that the posteriori pdf can be rewritten us-

ing Bayes’ rule as

p(xk|y1:k) =
p(yk|xk, y1:k−1)p(xk|y1:k−1)

p(yk|y1:k−1)
∝ p(yk|xk)p(xk|xk−1)p(xk−1|y1:k−1) (8)

and inserting (7) and (8) into (6), the weights are re-
cursively updated as

w
(i)
k ∝ w

(i)
k−1

p(yk|x(i)
k )p(x(i)

k |x(i)
k−1)

q(x(i)
k |x(i)

k−1, y1:k)
. (9)

The particle filter with these steps is called “Sequential
Importance Sampling Particle Filter” (SIS).

It is known that the SIS filter suffers from the de-
generacy phenomenon, where all but one of the nor-
malized importance weights are very close to zero
after a few iterations. By this degeneracy, a large
computational effort is wasted to updating trajecto-
ries whose contribution to the final estimate is almost
zero. In order to prevent this phenomenon, several
modifications have been introduced. Among them, re-
sampling process, which eliminates trajectories whose
normalized importance weights are small, is a com-
mon approach. It involves generating new grid points
x∗k

(i) (i = 1, . . . , n) by resampling from the grid ap-
proximation (5) randomly with probability

Pr(x∗k
(i) = x

(j)
k ) = w

(j)
k (10)

and the weights are reset to w∗
k
(i) = 1/n, when

N̂eff =
1∑n

i=1(w
(i)
k )2

(11)

with the associated normalized weight w
(i)
k is less than

a predefined threshold Nthres < 1. Particle filter with
this resampling process is called “Sampling Impor-
tance Resampling Particle Filter” (SIR).

3 Evolution Strategies Based Particle
Filter

Evolution Strategies (ES) is one of the Evolutionary
Computation approaches, computational models sim-
ulating natural evolutionary processes to design and
implement computer-based problem solving systems
(see the extensive surveys, for examples[3]. It has
been applied to continuous function optimization in
real-valued n-dimensional space via selection and per-
turbation processes called mutation. Mutation process
is realized by the additive process.

σ′j = σj exp(τ ′N(0, 1) + τNj(0, 1))

x′j = xj + σ′jNj(0, 1) (12)

where N(0, 1) and Nj(0, 1) denote a realization of nor-
mal random variable and normal random variables
sampled anew for counter j with zero mean and unit
variance, respectively, and σj denotes the mean step
size. The factors τ and τ ′ are chosen dependent on the
population size. The µ individuals of higher fitness are
chosen deterministically out of the union of µ parents
and λ offspring ((µ + λ)-selection) or λ offspring only
((µ, λ)-selection) to form the parents of the next gen-
eration in order to evolve towards better search region.
It can be seen that SIR and ES have similarities; both
the importance sampling process in SIR filter and mu-
tation process in ES give perturbation to the parent



individuals x
(i)
k−1 with extrapolation by f(x(i)

k−1), and
both resampling process in SIR filter and selection pro-
cess in ES select offspring among the perturbed indi-
viduals. However, there is a difference between them,
i.e., resampling in SIR is carried out randomly and the
weights are reset as 1/n, while the selection in ES is
deterministic and the fitness function is never reset.
Hence, by replacing the resampling process in SIR by
the selection process in ES, we can derive a new par-
ticle filter as follows.

Based on the particles {x(i)
k−1, (i = 1, . . . , n)} sam-

pled from the importance density q(xk−1| y1:k−1), we
generates ` samples {x(i,j)

k , (j = 1, . . . , `)} according
to the importance density function q(xk|x(i)

k−1, y1:k).

Corresponding weights w
(i,j)
k are evaluated by

w
(i,j)
k ∝ w

(i)
k−1

p(yk|x(i,j)
k )p(x(i,j)

k−1 |x
(i)
k−1)

q(x(i,j)
k |x(i)

k−1, y1:k)
(13)

From the set of n` particles and weights {x(i,j)
k , w

(i,j)
k ,

(i = 1, . . . , n, j = 1, . . . , `)}, we choose n sets with
the larger weights, and set as x

(i)
k , w

(i)
k (i = 1, . . . , n).

This process corresponds to (n, n`)-selection in ES.
Hence, we call this particle filter using (n, n`)-selection
in ES as Evolution Strategies based particle filter
Comma (ESP(,)). When we add the particles x

(i,0)
k =

f(x(i)
k−1), (i = 1, . . . , n) in addition to n` x

(i,j)
k , (i =

1, . . . , n, j = 1, . . . , `) sampled from the importance
density function q(xk|x(i)

k−1, y1:k) as above and evalu-

ate the weights {w(i,j)
k , (i = 1, . . . , n, j = 0, . . . , `)}

by (13), and then choose n sets of (x(i)
k , w

(i,j)
k ) with

larger weights from the ordered set of n(` + 1) par-
ticles {x(i,j)

k , w
(i,j)
k , (i = 1, . . . , n, j = 0, . . . , `)}, we

can obtain another ESP filter. Since this ESP filter
uses the selection corresponding to (n + n`)-selection
in ES, we can call this filter as Evolution Strategies
based particle filter Plus (ESP(+)).

4 Simultaneous State and Parameter
Estimation by Evolution Strategies
Based Particle Filter

The proposed ESP filter is applied here to simul-
taneous state and parameter estimation of nonlinear
systems. Consider the nonlinear state space model (1)
with unknown parameter θ and (2), where a poste-
riori pdf p(xk, θ|y1:k) should be approximated to esti-
mate state and parameter simultaneously, Application
of Bayes’ rule (4) provides

p(xk+1, θ|y1:k+1) ∝ p(yk+1|xk+1, θ)p(xk+1|θ, y1:k+1)
×p(θ|y1:k+1)

Since the form of the theoretical pdf p(θ|y1:k) is not
known for unknown parameter case, we replace θ by
θk at time k, and simply include θk in an augmented
state vector xk = (xk, θk)T , where θk evolves as

θk+1 = θk + ηk (14)

and ηk is a normal random disturbance with zero-mean
and very small variance. Then approximation of the
true posteriori pdf is given by

p(xk|y1:k) ≈
n∑

i=1

w
(i)
k δ(xk − x

(i)
k ) (15)

If particles x
(i)
k in (15) were drawn from an importance

density

q(x(i)
k |x(i)

k−1, y1:k) = qx(x(i)
k |x(i)

k−1, θ
(i)
k−1, y1:k)

×qθ(θ
(i)
k |x(i)

k−1, θ
(i)
k−1, y1:k) (16)

with importance densities for xk and θk, qx(x(i)
k |x(i)

k−1,

θ
(i)
k−1, y1:k) and qθ(θ

(i)
k |x(i)

k−1, θ
(i)
k−1, y1:k), and the asso-

ciated normalized weights are evaluated by

w
(i)
k ∝ w

(i)
k−1

p(yk|x(i)
k , θ

(i)
k )

qx(x(i)
k , θ

(i)
k |x(i)

k−1, θ
(i)
k−1, y1:k)

×
p(x(i)

k , θ
(i)
k |x(i)

k−1, θ
(i)
k−1)

qθ(θ
(i)
k |x(i)

k−1, θ
(i)
k−1, y1:k)

. (17)

Then, the SIS, SIR and ESP filters are defined as
above.

4.1 Numerical Examples

Numerical simulation are carried out to exemplify
the applicability of the proposed ESP filter. First, we
consider the following nonlinear state space model

xk =
xk−1

2
+

θxk−1

1 + x2
k−1

+ 8 cos (1.2k) + vk

= f(xk−1, θ) + vk (18)

yk =
x2

k

20
+ wk (19)

where vk and wk are i.i.d. zero-mean normal ran-
dom variables with variance 10 and 1, respectively, and
value of the parameter θ is known to be 25. The nor-
mal distribution with mean f(x(i)

k−1) and variance 10

is chosen as the importance density q(xk|x(i)
k−1, y1:k).

Sample paths of the estimates by the proposed ESP(,)
(n = 100, ` = 4) and EKF as well for comparison
are given in Fig.1. Proposed ESP filter works well in
nonlinear state estimation, while the estimate by EKF
cannot follow the true state.



(a) Estimate by ESP(,)

(b) Estimate by EKF

Figure 1: Sample paths of state estimates (dashed line:
estimate, solid line: true state)

Next, we consider the unknown parameter case
where the true value of θ = 25 in (18) is not known.
Here, only the results by ESP(,) with the impor-
tance densities qx(x(i)

k |x(i)
k−1, θ

(i)
k−1, y1:k) ∼ N (f(x(i)

k−1,

θ
(i)
k−1, 10) and qθ(θ

(i)
k |x(i)

k−1, θ
(i)
k−1, y1:k) ∼ N (θ(i)

k−1, 0.01)
are shown in Fig.2 since the EKF does not work as
before. Though the estimate approach to the true
ones, the convergence speed is slow and the filter leaves
much for improvement. For examples, better choice of
design parameters n, Neff and ` and choice of evolu-
tion operations should be pursued since the estimation
performance, of course, depends on the choice of them.

5 Conclusions

The novel particle filter, which is developed by rec-
ognizing the similarity and the difference between the
importance sampling and resampling processes in the
SIR filter and mutation and selection processes in ES
and substituting (µ, λ)-selection in ES into resampling
process in SIR, is applied to simultaneous state and
parameter estimation of nonlinear state space models.
It works stably and provides small mean square errors
compared to EKF filter. Application of other evolu-
tion operations such as crossover and modification of
mutation will have the potential to create much higher
performance particle filters.

(a) A sample path of the state estimate

(b) A sample path of the parameter estimate

Figure 2: Simulation results in simultaneous state and
parameter estimation by ESP(,)
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