Model-less Visual Servoing Using Modified Simplex Optimization
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Abstract

In this paper, we present a robot positioning task
with respect to a static target by visual servoing. The
vision system is uncalibrated and the kinematic model
of the robot may be totally unknown. The displace-
ments of the robot in joint level are generated in
real time in order to minimize an objective function.
The objective function includes the quadratic error
between the current and the desired target images.
A simplexr method is used to minimize the objective
function, and a Newton-like method is also used near
the convergence. We successfully validate this method
with simulations under the graphic library OpenGL.

1 introduction

Most of the previous works on visual servoing as-
sume that the kinematic model of the robot and the
camera intrinsic parameters are known. Most of these
methods could work with weak calibration, but they
would fail if the robot and the vision system were fully
unknown.

Uncalibrated and model-less visual servoing has
been addressed by Hosoda et al. [1], and Jégersand
[2]. They use an on-line estimation of the Jacobian be-
tween the joint velocities of the robot and the feature
velocities in the image plane. Their approach assumes
the on-line identification of a large number of param-
eters. In the presence of noise, this type of approach
may lead to a badly estimated Jacobian matrix if the
motions of the robot do not guarantee identifiability
of the parameters.

In previous research, we proposed a novel approach
for uncalibrated and model-less visual servoing using a
modified simplex iterative search method is proposed.
We successfully demonstrated the algorithm with a in-
dustrial manipulator[4]. However, it usually requires
a lot of iteration to complete the positioning task ac-
curately.
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In this paper, a Newton-like optimization algorithm
is adopted for quicker convergence. The simulations
are carried out in the case where the kinematic model
of the robot is unknown, assuming that the joint limits
are known. The intrinsic parameters of the camera are
also unknown. The improvement of the convergence
speed is discussed with the simulation results.

2 Simplex method and its modification
for visual servoing

2.1 Conventional simplex method by
Nelder and Mead

Simplex method is an unconstrained optimization
technique. Note that it is different from the linear
programming technique method also called ”simplex”.
This method was originally proposed by Spendley,
Hext, and Himsworth [7] and was developed later by
Nelder and Mead [5].

This section deals with the methods for solving the
minimization problem:

Find X = {x1,22,...,2,} which minimize F(X) (1)

The geometric figure whose vertices are defined by a
set of n+1 points in an n-dimensional space is called a
simplex. For example, in two dimensions, the simplex
is a triangle, and in three dimensions, it is a tetrahe-
dron.

The basic idea in the simplex method is to compare
the value of the objective function at the n+1 vertices
of a simplex and move the simplex gradually toward
the optimum point during the iterative process, known
as reflection, contraction, and expansion.

If X} is the vertex corresponding to the highest
value of the objective function among the vertices of
a simplex, we can expect the point X, obtained by
reflecting the point X, in the opposite face to have a



smaller value. Mathematically, the reflected point X,
is given by;

X, =a(X,—Xn)+ X, (2)

where X, is the centroid of all the points X; except
i =h, and « is the reflection coefficient (o > 0).

In the case f(X,) gives the smallest cost between
all the vertices, one can generally expect to see the
function value decrease further by expanding X, to
Xe;

Xe:’Y(Xr_Xo)‘FXo (3)

where 7 is called the expansion coefficient (v > 1).
If the reflection process gives a worst value, X, is
contracted to X;

X.=0(Xn—-X,)+X, (4)

where 3 is called the contraction coefficient (0 < § <
1).

If the contracted point still has worst value, the
contraction process will be a failure, and in this case

we apply a reduction process, i.e. all X; are replaced
by;

1
neWXizi(Xi—i—Xl) 1=1,2,...,n+1 (5)

with X;, the vertex where the objective function is
minimum. Then, we restart the reflection process.

The method is assumed to reach convergence when-
ever some stopping criteria have been met, e.g.:

TL+1 n+1
{F(X;) - F}? e F(X)
< F =
Z n—l—l €1, with ; i (6)
or F(X[) S S0 (7)

2.2 Modified simplex method for real-
time visual servoing

We slightly modify the Nelder and Mead simplex
method for the particular case of visual servoing with
a robot. The main idea is to use a simplex like opti-
mization algorithm to move the robot from an initial
position to a goal position, so that the robot is per-
forming the optimization. Since the vision system ac-
quires images continuously and assuming that joint
angles are also measured, the cost function can be
computed along the trajectory of the robot while it
is moving from a vertex to its reflection point. There-
fore, the optimum could be selected along that vertex.

In real-time, in other words, this is equivalent to modi-
fying the Nelder and Mead simplex method by adding
a line search procedure during the reflection, expan-
sion, or reduction process. With this technique, the
contraction process is omitted and faster convergence
is expected.

3 Newton-like optimization method

Assuming that m features are detected in the im-
age, let define f(X) as the m-dimensional vector of the
feature errors, where X is the vector of size n defin-
ing the position of the robot (e.g., X are the joint
angles). Hence, the feature error vector f(X) = 0 if
X = X7, the desired position of the robot. Therefore,
the positioning task using visual servoing is achieved
by minimizing the following objective function:

FX) = $f(X)Tf(X) (®)
£(X)

with  f(X) = : (9)
fn(X)

Indeed, the feature error value f(X
F(X).
A Newton-like algorithm is given by:

*) = 0 minimizes

X1 = Xp—op(JeJ]) T e f(Xk)  (10)

where, 0 < «y, is the step size in the descent direction,
and J(X) is the n x m Jacobian matrix of the feature
errors:

af;(X)

Jij(X) = ==

(11)
and J; = J(Xk).

If the Jacobian matrix is unknown, it must be esti-
mated on-line. Piepmeier et al. [6] presented a mov-
ing target tracking task based on the quasi-Newton
optimization method. The Jacobian of the objective
function is estimated on-line with a Broyden’s update
formula (equivalent to a LMS algorithm). This ap-
proach is adaptive, but cannot guarantee the stability
of the visual servoing scheme in presence of large er-
rors in the image or if the motions of the robot do not
guarantee identifiability of the parameters.

It should be pointed out that the Newton optimiza-
tion algorithm has local properties of convergence, i.e.,

it will converge toward the nearest local minimum of
F(X)



4 Simulation
4.1 Experimental procedure

The model of robot manipulator is a 6DOF indus-
trial manipulator, and the target object is a cylindrical
white cup in Fig. 1. The task consists in bringing the
end-effector fitted with a camera (eye-in-hand config-
uration) at the vertical of the object. To compare
several optimization runs, we use the same starting
positions.

Three procedures are compared with respect to the
number of iterations and the accuracy of the conver-
gence:

Schemel: A positioning task is carried out only with
the simplex optimization.

Scheme2: During simplex iterative search, on-line Ja-
cobian estimation using a Broyden’s update for-
mula is carried out using the information at the
simplex vertices. Once the simplex optimization
arrives near the minimum, the process switches
to the Newton-like optimization with Eq. 10.

Scheme3: The process switches to the Newton-like op-
timization without on-line Jacobian estimation
during the simplex optimization phase. The Ja-
cobian matrix is estimated with small movement
around the current position.

Furthermore, to accelerate the convergence, a hy-
brid scheme combining an optimization algorithm with
an image-based partial visual servoing loop is pro-
posed. The idea is to bring the target object to the
center of the image, during the optimization process.
Thus the target will not be lost during the iterative
search, which is a well known problem in visual servo-
ing (cf. E. Malis [3]). The manipulator has six joints,
and the image-based centering scheme is assigned to
two joints near the end-effector. Three joints are con-
trolled by the simplex and Newton-like optimization,
and a joint is fixed.

4.2 Objective function

The objective functions are usually selected as sum
of square of feature errors. A possible objective func-
tion could have the following features:

e The distance between the end-effector and the ob-
ject is given by its size in the image.

e The angle between the object axis (cylinder axis)
and the optical axis of the camera is given by the

(a)start position

(b)final position

Figure 1: Start and goal position of the robot and
their images taken at the end-effector

form factor of its image (form factor = 1 when
this angle is zero). This angle can be decomposed
in two elementary angles (e.g. roll and pitch).

We also use the sum-of-square-difference (SSD) of
each pixel intensity between the current and the ref-
erence image of the object as an error. Note that SSD
does not need feature extraction.

For this task, we propose the following objec-
tive/cost function:

FX) = 7(X)7f(X) (12
where,

AX) = m(5-1)

S
BX) = W <llzong _ 1>
short
fB(X) = WSZ(PcuT(ivj)_Pref(ivj))2
0,J

where s and S are the actual and the desirable size of
the object in the image, ljong is the longest distance
from the center of the object to its contour, and lsport
is the shortest one. Therefore ll“% is the form factor
of the object image. P, and P, are pixel intensities
of the current and the reference image, respectively.
Finally, Wy, W5, and W3 are the respective weights of
feature errors in the cost function.



5 Results and Discussion

Simulations were carried out comparing several
schemes. All schemes were executed with modified
simplex optimization until rough convergence. Termi-
nation tolerance in Eq.6 and Eq.7 were decided exper-
imentally.

Schemel converged, but it took more iteration near
the minimum. The modified simplex roughly con-
verged with 16 iterations, and the process took 27 iter-
ations near the minimum. The vertices of the simplex
often fell into a small local minimum, and the simplex
restarted the process again.

Scheme 2 did not converged. The estimated Ja-
cobian was not close enough to the true Jacobian.
Though this type of estimation method guarantees the
accuracy in a small area, the estimation used the im-
age data at the vertices of the simplex in a large area.
A solution is to have a large forgetting factor A, how-
ever, it may lead to a badly estimated Jacobian matrix
in the presence of noise.

Scheme 3 converges quicker than simplex near the
minimum with 36 total iterations. The trajectory
was also very simple, as shown in Fig. 2. However,
this scheme was not always robust when the objective
function had large noise at the initial position of the
Newton-like optimization process.

All these experiments make it clear that the opti-
mization with only the simplex method takes many it-
erations near the minimum. Newton-like method with
on-line Jacobian estimation converged faster, since the
Newton optimization algorithm has better local prop-
erties of convergence. However, it has a risk of a badly
estimated Jacobian matrix in the presence of noise.
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Figure 2: Trajectory of the optimization process

6 Conclusion

In this paper, we used the modified simplex opti-
mization techniques for a positioning task by visual
servoing. This method does not need a model of the
robot and does not require the estimation of Jacobian
matrices. Thus, a robot never goes in the wrong di-
rection due to the bad estimation. Moreover, the ob-
jective function does not need to be differentiable.

Since the simplex method took more iterations near
the minimum, the Newton-like method with on-line
Jacobian matrix estimation was also executed in order
to have quicker convergence. We successfully demon-
strated the proposed scheme with simulations.

Improvements are needed for stable convergence.
Jacobian matrix estimation was not always correct be-
cause of the large motions of the robot between the
vertices of the simplex that do not guarantee sufficient
excitation for the identification of the parameters.

For the future works, it is important to find the
objective function without noise, which may cause a
badly estimated Jacobian matrix.
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