
Real-Time Structure Preserving Image Noise Reduction For Computer Vision On

Embedded Platforms∗

Walter Nistico, Uwe Schwiegelshohn, Matthias Hebbel, Ingo Dahm

Department of Electrical Engineering

Computer Engineering Institute

University of Dortmund

Otto-Hahn-Str. 4, D-44221, Dortmund, Germany

name.surname@udo.edu

Abstract

A camera is often the main sensor of autonomous
robots. As those embedded platforms offer minor com-
puting power only, it is a challenge to provide a fast
and robust image processing. This paper describes
a new real-time structure preserving noise reduction
operator based on the so-called SUSAN filtering ap-
proach. We use a correlation function to determine
which part of a pixel’s neighborhood has to be included
in the smoothing process. Thus, the smoothing pro-
cess takes place only inside homogeneous regions of
the image, without blurring edges and bi-dimensional
features which are needed for object recognition.

1 Introduction

With the recent development of autonomous mo-
bile applications, embedded platforms have become
a viable and convenient option for robotics (e.g.
Sony ERS-7).However, embedded robotic platforms
are severely limited in terms of processing resources,
due to the space and power constraints which are a
consequence of autonomous operation. Furthermore,
low power consumption cameras can exhibit signifi-
cant amounts of noise in the images they capture [1].
Linear noise reduction convolution operators, such as
Gaussian smoothing filters, are relatively inexpensive
in terms of computing power. Yet, they significantly
alter crucial features for computer vision such as edges
and corners. Non-linear operators which selectively
determine what part of the convolution kernel to in-
clude in the smoothing process, exhibit satisfactory
performance in terms of image structure preservation
while effectively reducing noise [2]. On the other hand,

∗This work was supported by the Deutsche Forschungsge-

meinschaft DFG under program of emphasis SPP 1125

as we will show, the computational cost of such filters
makes them not suitable for real-time applications on
embedded platforms.

2 Noise Reduction Filtering

Conventionally, noise reduction is done by cutting
the high frequency components of an image. Thus, all
relevant information of the high frequency part of the
spectrum of the image is lost. This is why non-linear
operators try to preserve image structures by selec-
tively determine which part of a pixel’s neighborhood
has to be included in the smoothing process.

2.1 SUSAN Noise Filtering

The SUSAN noise reduction filter achieves this by
applying a correlation function to calculate the simi-
larity of the brightness of a pixel to be filtered with a
neighborhood defined by a fixed convolution mask [2]:

c(p, p0) = e
−
(

I(p)−I(p0)

t

)2

(1)

In Equation 1 c(p, p0) represents the Gaussian cor-
relation function, where the so-called nucleus p0 =
(x0, y0) is the pixel which is going to be filtered,
p = (x, y) is a pixel which belongs to the convolu-
tion mask around the nucleus, and t is the brightness
threshold which controls the width of the Gaussian.
In the spatial domain, the SUSAN filter also makes
use of a Gaussian weighing. Accordingly, the overall
equation of the filter is given by Equation 2:

I ′(p0) =

∑

p6=p0

I(p) · e
− r2

2σ2−
(

I(p)−I(p0)

t

)2

∑

p6=p0

e
− r2

2σ2−
(

I(p)−I(p0)

t

)2 (2)



Here, I(x, y) is the brightness of a pixel before fil-
tering, I ′(x, y) is the filtered brightness , and σ deter-
mines the spatial Gaussian weighing.In case the de-
nominator of such a function for a given pixel is zero,
it means that its whole neighborhood is uncorrelated
with it, and hence it’s treated as pulse noise. This is
dealt with by using as an estimate for the pixel bright-
ness the median of its 8 closest neighbors [3].

2.2 Going Real-Time

An efficient implementation of such a filter is to
precalculate the non-linear correlation function for a
chosen t in a look-up-table L. Using the Sony ERS-7
as a reference implementation, the total size of such
a table is 2044 byte. In the following, this will be
referred to as

Lcorr.[∆I] := exp

(

−

(

∆I(x, y)

t

)2
)

(3)

Further, it has to be specified the spatial scale of
the smoothing σ, which can be also precalculated and
stored in the convolution mask of neighbors:

Lmask[∆x][∆y] := exp

(

−
(∆x)2 + (∆y)2

2σ2

)

(4)

Now for each pixel in the mask of neighbors, ap-
plying Equation 2 can be done at the cost of 2 look-
ups, a division and several multiplications and addi-
tions(depending on the mask size).
If the denominator of Equation 2 equals zero, the

eight closest neighbor’s brightnesses have to be put in
an array which has to be sorted, and the 2 median
values averaged. Due to efficiency reasons, we recom-
mend the use of the insertion sort algorithm [4].
In all other cases, the division is the most complex

and expensive operation in terms of execution time,
followed by the multiplication [5, 6].
In order to avoid one source of multiplications in-

volved in the original algorithm, we chose to replace
the correlation function with a rect2τ (p, p0): having
a sharper cutoff, the optimal threshold τ is somehow
more dependent from the amount of noise present in
the images ([2]), however having a binary co-domain
for the function means that we can represent it with in-
teger values, and use the smallest data type offered by
the processors for that purpose, which is the byte, re-
ducing the size of the look up table to 1

4 of the original,
for a total of 511 byte. This can be further reduced, in
case of processors with very limited cache amounts, by
introducing a quantization n : 1 (with n = 2i, works

well for i = 1, 2) in the domain of the function, which
has the only negative effects of an increase of granular-
ity of the threshold value (which can then assume only
valuesmodn(t) = 0) and require an additional shift op-
eration of ∆I by i positions. The multiplication can be
avoided, by using c(p, p0) = −rect2τ (p, p0) ∈ {0,−1}
whose domain is represented in signed byte format re-
spectively as 00000000 and 11111111, hence the corre-
lation weighing can be performed with a simple bitwise
logical operation AND 〈I(p), c(p, p0)〉. The remaining
multiplications can be avoided by approximating the
original Gaussian spatial weighing with a special mask
that is illustrated by Figure 2. Then, no spatial weigh-
ing multiplications are required, because the neighbors
whose weight is 0 in the mask are simply not included
in the numerator and denominator sums n and d. As a
result, let M = {(1, 1); (1,−1); (−1, 1); (−1,−1)} rep-
resent the neighbors considered by the algorithm, the
equation of the new filter is:

I ′(p0) =

∑

p∈M

I(p) · rect2τ (I(p)− I(p0))

∑

p∈M

rect2τ (I(p)− I(p0))
(5)

In order to speed-up the division operation, we first
have to note that the denominator d of such a function
can assume only 5 possible values: d ∈ {0, 1, 2, 3, 4},
which represents how many neighbors are ”similar” to
the nucleus for a given pixels. The statistical incidence
of each case is dependent on the threshold τ of the cor-

relation function: obviously, for τ = 0
∀(x,y)
⇒ d(x, y) =

0, while for τ = 255
∀(x,y)
⇒ d(x, y) = 4. Using a sample

of 100 images captured from the on-board camera of
our robot (Aibo ERS7) from real-world situations, we
have measured that for values of τ ≥ 6 case d(x, y) = 4
totally dominates with more than 80% of occurrences
(which become > 91% for d(x, y) = 10): following the
criterium of making the common case fast, we have re-
placed the division with a series of nested conditional
branches, such that in the most common case only
one conditional branch is performed, followed by the
second most common with 2, and so on.

The following case differentiation shows, what oper-



ations should performed according to the denominator
value d in order to achieve optimized processing speed:

d=4: replace division by a shift-right instruction by
two positions: I ′(x, y) = n(x, y) >> 2

d=3: approximation: add nucleus to nu-
merator and divide by four I ′(x, y) =
(n(x, y) + I(x, y)) >> 2

d=2: replace devision by a shift-right instruction by
one bit I ′(x, y) = n(x, y) >> 1

d=1: nothing to divide
d=0: perform median filtering: just discard the

maximum and minimum, then average the re-
maining.

Figure 1: Calculating the median. {a, b, c, d} is the
set of neighbours, m(x, y) stands for the minimum and
M(x, y) for the maximum of elements x and y, the 2
final values have to be averaged.

3 Performance Analysis

To better evaluate the performance of our new ap-
proach, we have separated our tests into two cate-
gories: structure preservation in noisy images, and
run-time measurements. The latter is particularly im-
portant for our application domain, since the filter is
meant to be used on a robot with limited computa-
tional resources in a dynamic and competitive envi-
ronment, where it has to quickly react to the changing
situations. As a reference, we have compared our filter,
that here will be referred to as ”SUSAN RealTime”,
with the following operators:

- the original SUSAN, presented with the smallest
mask suggested by its authors (3× 3), in order to
minimize its running time;

- the Gaussian, with mask size also 3 × 3, in the
most popular and computationally efficient vari-
ant, as shown in Figure 2.

0 1 0
1 0 1
0 1 0

1 2 1
2 4 2
1 2 1

Figure 2: Masks of neighbors, integer approximation
of the original gaussians. Left: SUSAN RealTime
mask. Right: Gaussian with σ2 ≈ 0.64.

3.1 Running Time

We measured the running time of each filter over
100 images captured by the camera of the robots: on
the robot Sony Aibo ERS7 the camera has a resolution
of 208 × 160 pixel, 24 bit per pixel. In all cases, the
filters were running in normal conditions of operations,
thus in parallel with other system threads. While the
SUSAN RealTime execution time is dependent on the
brightness threshold used, we have empirically derived
the optimal for the noise present in the images (τ =
14), and we have verified that its speed is only ≈ 1%
slower than the best case which is (τ = 255).

ERS7 576MHz, 208× 160 pixel image
Filter Average(ms) Min Max
SUSAN RT τ = 14 9.904 9.8 10
SUSAN τ = 12 50.796 50.65 50.95
Gaussian σ2 ≈ 0.64 5.864 5.75 6

As can be seen, the SUSAN RT is ≈ 5 times faster
than the original algorithm, and in tests where the
latter used the same mask, our approach was still ≈ 3
times faster. Compared to the gaussian, it’s ≈ 1.7
times slower, which is a very good result for a non-
linear filter. A more detailed comparison can be found
in [7].

3.2 Noise Reduction

To evaluate the noise reduction and structure
preservation capabilities, we have followed a similar
approach as in the original SUSAN article ([2]), but
with a notable exception: the results will be measured
after a single application of each filter, this because in
our domain the total execution time is critical, mak-
ing unfeasible a repeated iteration until the error vari-
ance reaches 0. For each filter which requires to deter-
mine a threshold, we have used in all tests the value
which provided the overall best score: using different
thresholds in different tests would yield higher scores,
but this doesn’t reflect the real usage, since several
kinds of noise are present simultaneuosly inside real
images, and the amount of edges and bi-dimensional



structures is varying continuously depending on the
objects present in the scene.

Edge Preservation, 10% of Noise, final gradient
Filter Gaussian Pulse Uniform
SUSAN RT τ = 24 55.51 53.45 54.44
SUSAN τ = 19 55.09 51.56 54.35
Gaussian σ2 ≈ 0.64 34.72 33.54 34.03

Table 1: The reference image is a perfect step edge of
300 pixel length, with gradient of (∆ = 55). Higher
numbers mean a better score.

Corner Preservation, 10% of Noise, final σ
Filter Gaussian Pulse Uniform
SUSAN RT τ = 24 4.39 6.07 4.68
SUSAN τ = 19 3.77 10.93 4.33
Gaussian σ2 ≈ 0.64 4.60 10.77 4.78

Table 2: The reference image is 102 × 102, with a
uniform brightness of 112, which contains 100 squares
of size 5×5 and brightness 135, so the feature strength
is (∆ = 25). Lower numbers mean a better score.

For all the experiments we have made, it must be
noted that the SUSAN RealTime is performing bet-
ter than the original in presence of pulse noise: this
is a consequence of having a smaller mask, so that
the chances of finding two similar noise spikes inside it
are lower, and because of the sharper correlation func-
tion. The gaussian filter performed badly, reducing
the strength of edges and corners; the original SU-
SAN overall provided the best filtering, however the
new SUSAN RealTime scored very close to it, and
proved to be very well balanced in all test conditions.

4 Results

We have used the SUSAN RealTime filter in
the image processor of our RoboCup team Mi-
crosoft Hellhounds (which is part of the German-
Team that won RoboCup 2004 in Lisbon) to take
part at several RoboCup competitions: GermanOpen
2004, AustralianOpen 2004, AmericanOpen 2004, and
JapanOpen 2004. The average running time of the
whole image processor, on the Sony ERS7 robot, was
17ms for a frame processing rate of 28.5 fps, which
was more than adequate to track fast moving objects.
The performance of the suggested approach is ana-
lyzed both in terms of noise filtering and structure
preservation as well as in terms of running time on

different CPU architectures. We proved that this fil-
ter combines the benefits of non linear structure pre-
serving operators with processing times comparable to
linear ones. We presented a practical application for
the RoboCup Four-Legged Soccer League. Further-
more, we showed that the limits of this approach (the
lack of scalability in terms of noise filtering due to the
spatial constraints and the rippling behavior in the
high frequency range) cannot be overcome with tradi-
tional approaches as well within the typical process-
ing constraints of real-time applications on embedded
platforms. Compared to existing algorithms, the sug-
gested approach provides an excellent ratio between
image quality and runtime behavior. As a final con-
clusion, this efficient algorithm for image processing
helps to save processing power which can be used for
less time-critical applications like AI or task schedul-
ing.

References

[1] J. Bunting, S. Chalup, M. Freeston et.al., “Return
of the NUbots! The 2003 NUbots Team Report,”
Tech. Rep. N.N., Newcastle Robotics Laboratory,
The University of Newcastle, Australia, 2003.

[2] S. M. Smith and J. M. Brady, “SUSAN - A New
Approach to Low Level Image Processing,” Int.
Journal Computer Vision, vol. 23, no. 1, pp. 45–
78, 1997.

[3] M. Singh and P. K. Bora, “Two-Dimensional Lin-
ear Prediction Based Median Filtering,” 2002.

[4] R. Sedgewick, Algorithms, ch. 9, pp. 120–125.
Addison-Wesley, 2nd ed., 1984.

[5] D. A. Patterson and J. L. Hennessy, Computer Or-
ganization & Design. The Hardware/Software In-
terface, ch. 4. Morgan Kaufmann, 1994.

[6] J. L. Hennessy and D. A. Patterson, Computer Ar-
chitecture - A Quantitative Approach, ch. 3, 5, Ap-
pendix H. Morgan Kaufmann, 3rd ed., 2003.

[7] W. Nistico, U. Schwiegelshohn, M. Hebbel, and
I. Dahm, “SUSAN RealTime - Structure Preserv-
ing Noise Reduction For Computer Vision,” Tech.
Rep. 1004, University of Dortmund, 2004.


