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Abstract 
 

     This paper presents a systematic analysis and a 
simple design of a robust adaptive control law for a class 
of nonlinear systems with modeling errors and a 
time-delay input. The theory for designing a robust 
adaptive control law based on input-output feedback 
linearization of nonlinear systems with uncertainties and 
a time-delay in the manipulated input by the approach of 
parameterized state feedback control is presented. The 
main advantage of this method is that the parameterized 
state feedback control law can effectively suppress the 
effect of the most parts of nonlinearities, including 
system uncertainties and time-delay input in the 
pp-coupling perturbation form and the relative order of 
nonlinear systems is not limited.  
Keywords: nonlinear, robust control, adaptive control, 
time-delay 
 
1 Introduction 
 

Recent developments in the theory of differential 
geometry provide useful methods for a class of nonlinear 
systems. The central concept of this approach is to 
algebraically transform the nonlinear system dynamics 
into an equivalent linear system, such that the 
conventional linear control techniques can also be 
applied [1, 2]. Generally, the feedback linearization 
techniques require the accurate mathematical model for 
the plant to achieve exact linearization of the close loop 
system. However, for many real processes, there exist 
inevitable uncertainties in their constructed structure 
models. Therefore, design of a robust controller for a 
nonlinear system is important subject.  

In this paper, we present a systematic analysis and a 
simple design of an adaptive control law for a class of 
nonlinear systems with modeling errors and a time-delay 
input. The so-called matching conditions [3] for 
controlled nonlinear systems and the Smith predictor are 
not necessary. System uncertainty is considered as the 
non-vanishing case in the desired operating condition. 
Using the parameterized coordinate transformation, the 
original nonlinear system can be transformed to a class 
singular perturbation problem having distinct fast and 
slow dynamics. An adjustable parameter can be detuned 
to satisfy the desired control specification. When the 
lumped nonlinearity, including uncertainty and 
time-delay input, is constrained to a closed bounded set 
and satisfy the local Lepschitz condition [4], its effect on 
the output trajectory can be effectively suppressed using 
the proposed technique. More precisely, to treat the 

tracking problem, an ultimate bound of tracking error is 
investigated under the specific reference model. 
 
2 Preliminaries and problem formulation 

 
Consider the uncertain single input single output 

(SISO) nonlinear system with time-delay input: 
 x,(t)=f(x(t))+Df(x(t))+[g(x(t))+Dg(x(t))]u(t-d)      (1) 
 y(t)=h(x(t))                                                                 

, where x ∈  Rn is the state variable, u ∈ R is the 
manipulated input, d>0 is the time delay in the 
manipulated input, y∈R is the output .f(•), g(•), Df(•) 
and Dg(•) are smooth vector fields on Rn, and h(•) is a 
smooth function. The nominal system is then defined as 
follows: 

x,(t)=f(x(t))+g(x(t))u(t)                                            (2) 
y(t)=h(x(t)) 

, i.e. assume that Df(•) = 0, Dg(•) = 0, and d=0 in (1). 
There has been a great deal of research in recent years 

over the development of a complete theory for explicitly 
linearizing the input-output map of the nominal system 
(2) using state feedback. Here we introduce some 
notations from differential geometry, namely the Lie 
derivative, which is frequently used in this paper. For 
more general treatment in this area, readers are advised 
to look in [1], [5]. Given a scalar function h(x(t)) and a 
vector field f(x(t)) on Rn, one can define a new scalar 
function Lfh(x(t)), called the Lie derivative of h(x(t)) 
with respect to f(x,t): 

Lfh(x(t))=
)(
))((

tx
txh

∂
∂ f(x(t))                                       (3) 

Thus, the Lie derivative Lfh(x(t)) is the directional 
derivative of h(x(t)) along the direction of the vector 
f(x(t)). Higher order Lie derivative can be defined 
recursively as: 

Lf
0h(x(t))=h(x(t))                                                    (4) 

Lk
f(x(t))= ∑

=

n

j tx1 )(∂
∂ [Lk-1

fh(x(t))]fj(x(t)), k = 1, 2, 3, …  

                                                                                (5)  
if g(x)is another smooth vector field on Rn, then one 

can define the Lie derivative of h(x(t)) with respect to 
two different vector fields: 

LgLf
k h(x(t))= ∑

=

n

j tx1 )(∂
∂ [Lk

fh(x(t))]gj(x(t)),  

k=1, 2, 3, …                  (6) 
Furthermore, the minimum eigenvalue of a hermitian 

is denoted as λ min(•) and λ max(•), where as the 
transpose of the vector or of a matrix is written as (•)T 
and || • || denotes the Euclidean norm.  
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An important property of a nonlinear system is its 
relative degree. For a linear system defined in transfer 
function form, the relative degree is usually defined as 
the order of the denominator minus the order of a 
numerator. Amore general definition is used for 
nonlinear systems: 

Definition 1: The system (eqn.2) is said to have a 
constant relative degree r [6], if there exists a positive 
integer 1<=r<= ∞ ,such that  

LgLf
kh(x(t))=0,k< r-1                                              (7)  (7) 

LgLfr-1h(x(t))!=0   for all x∈  Rn and t∈  [0, ∞ )   (8) 
Throughout this paper, we assume that the nominal 

system (2) possesses a relative degree r. Based on the 
assumption, it has been shown that [1] there exits a 
neighborhood U of the operating point xs such that the 
mapping: 

p: U-> Rn                                                                                                  (9) 
defined as 
pi(x(t))=Ei(t)=Lf

i-1h(x(t)), i=1,2,3,. . .,r                 (10) 
pk(x(t))=Nk(t),   k=r+1,r+2,. . .,n                           (11) 

, and satisfying: 
Lgpk(x(t))=0,k=r+1,r+2,. . .,n                                (12) 

, is a diffeomorphism onto image. To obtain a linear 
input-output relation of (2), start with the external 
dynamics: 

E,
1(t)= ==

dt
dx

x
h

dt
dx

x
p

∂
∂

∂
∂ 1 Lfh(x(t))=p2(x(t))=E2(t)(13) 

…  

E,
r+1(t)= ==

−

−

dt
dx

x
L

dt
dx

x
p r

fr

∂

∂

∂
∂

1

1 Lf
r-1h(x(t)) 

          =p2(x(t))=Er(t)                                             (14) 

E,(t)=  
dt
dx

x
L

dt
dx

x
p r

fr

∂

∂

∂
∂

2−

=   

      =Lf
rh(x(t)) + LgLf

r-1h(x(t))u(t)            (15) 
Set 
a(E(t)), N(t)=LgLf

r-1h(x(t))u(t) ))(),((| 1 tNtEpx
−

=     (16)  (16) 

b(E(t), N(t))=LgLf
r h(x(t))u(t) ))(),((| 1 tNtEpx

−
=        (17) 

(15) can be written as: 
E,

r(t) = b(E(t),N(t))+a(E(t),N(t))u                         (18) 
Next, under eqn.12 the integral dynamics is 

considered as: 

N,
k(t) = )())(())((( tutxgtxf

x
p k +
∂

∂
 = Lfpk(x(t))+ 

Lgpk(x(t))u(t) = Lfpk(x(t)), k=r+1,r+2,r+3, …       (19) 
Thus, in short, the state space description of the 

system in the new co-ordinates as follows: 
E,

i(t)=Ei+1(t), i=1,2,3, …                                       (20) 
E,

r =b(E(t),E(t))+a(E(t),N(t))u(t)                          (21) 
N,(t)=q(E(t),N(t))                                                  (22) 
y(t)=E1(t)                                                              (23) 

, where qi(E(t),N(t)) = Lfpk(x(t)) ))(),((| 1 tNtEpx
−

= , k = 
r+1,r+2, … , n 

Generally, (20), (21) are called the external dynamics 
of the system, and (22) is called the internal dynamics of 
the system. The proper choice of a linearizing control 
law is now apparent from (21). As b(E(t),N(t)) is 
bounded away from zero, its inverse is well defined. 

Thus the following linearising feedback law can be 
derived from (16), (17) and (21): 

u(t)= =))(),( tvtφ (LgLf
r-1h(x(t))-1(-Lf

rh(x(t))+v(t))  
=a-1(E(t),N(t))[-b(E(t),N(t))+v(t)]            (24) 

, where v(t) is a new external control to be designed for 
the purpose of tracking signals. Note that the control law 
of (24) makes the state vector N(t) completely 
unobservable at the output. Since we are interested in 
achieving stable state tracking, it is required that N(t) 
remain bounded for the bounded E(t). However, we 
observe that E(t) can be thought as an external input 
vector with respect to the dynamics of N(t). Since E(t) is 
expected to track arbitrary time functions, it is clear that 
the boundedness of N(t) is entirely depend on the vector 
field q(E(t),N(t)). It can be easily verified that the 
equation: 

E,(t)=q(0,N(t))                                                       (25) 
, is referred to as the zero dynamics [1]. The system in 
which the zero dynamics is asymptotically stable 
referred to as the minimum phase system. Stable tracking 
requires a stronger stability criterion for the dynamics 

E,(t)=q(E(t),N(t))                                                          (26) 
be bounded input bounded state (BIBS) stable. In 
addition to the relative degree assumption, a further 
property of the zero dynamics required. This is 
illustrated in the following assumptions: 

Assumption 1: The zero dynamics of eqn.25 is 
exponentially stable. Moreover, the function q(E(t),N(t)) 
is Lepchitz uniformally in N(t). 

Remarks: 
(i)Since the zero dynamics is exponentially stable by 

assumption therefore by a converse theorem of 
Lyapunov [7], there exists a Lyapunov Vo(N(t))which 
satisfies the following properties: 

K1ºN(t)º2<= Vo(N(t))<=K2ºN(t) º2                                 (27) 

)(
))((

tN
tNVo

∂
∂ q(0,N(t)) <=-K3ºN(t)º2                                  (28) 

)(
))((

tN
tNvo

∂
∂ <=K4ºN(t)º                                       (29) 

,, where K1, K2, K3 and K4 are some appropriate 
positive constants. 

(ii) Due to the fact that q(E(t),N(t)) is Lepschitz in 
E(t) there exists a positive constant L such that 

ºq(E(t),N(t))- q(0,N(t))º<=LºE(t)º, N(t)∈Rn-r          (30) 
, and Lis called a Lepschitz constant of q(E(t),N(t))  [1]. 

Now, we are ready to design the tracking controller 
for the system (1) to minimize the trajectory error and to 
stabilize the close loop control system in the presence of 
system uncertainties and time-delay input. 

 
3 Results of research 
 

In this part, the robust control objective is to design a 
parameterized feedback linearizing control law such that 
the desired output trajectory of the close loop system is 
achieved and the effects of system uncertainty attenuated 
while maintaining the boundedness of all signals inside 
the control loops. For simplicity, all uncertain 
components can be lumped and the uncertain nonlinear 



system can be reduced to  
x,(t)=f(x(t))+g(x(t))u(t-d)+∑(x(t),u(t-d)) 
y(t)=h(x(t))                                                       (31) 

, where ∑(x(t),u(t-d))=Df(x(t))+Dg(x(t))u(t-d).  
Applying the nominal change of co-ordinates of 

equations (10)-(12) and the nonlinear state feedback of 
(24) to the system (1) yields 

E,
1(t)=E2 +  )))(),(((

)(
))(( dtutx

tx
txh

−∑
∂

∂
           (32) 

…  

E,
r-1(t)=Er(t) + ∑ −

∂

∂ −

))(),((
)(

))((2

dtutx
tx

txhLr
f     (33) 

E,
r(t)=v(t)+ 

∑ −−+−
∂

∂ −

))()()((())(),((
)(

1

tudtutxgdtutx
tx

Lr
f   (34) 

N1
,(t)=q1(E(t),N(t)) + ∑ −

∂
∂

))(),((
)(

dtutx
tx

pn       (35)   

N,
n-r(t)=qn-r (E(t),N(t)) + ∑ −

∂
∂ + ))(),((

)(
1 dtutx

tx
p r   (36) 

Taking advantage of the identities in the nominal 
transformations and by some derivations, it can be easily 
verified the equations (32)-(36) can be transformed into: 

E,(t)=AE(t)+Bv(t)+DA(x(t),u(t), u(t-d))              (37) 
N,(t)=q(E(t),N(t))+DΦ(x(t),u(t-d))                      (38) 
y(t)=CE(t)                                                            (39) 

, where E=[E1,E2,. . ., En]T, N=[N1,N2,. . ., Nn-r]T, 
DA = [DA1, DA2, … , DAr]T = 





















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






−−+−∑

−∑

−∑

−

−

)()())(()(),((
)(

))((

))(),((
)(

))((
...

))(),((
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))((

1

2

tudtutxgdtutx
tx

txhL

dtutx
tx

txhL

dtutx
tk
txh

r
f

r
f

∂

∂

∂

∂

∂
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, DA∈Rrx1 , DΦ= 1)(
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)))(),(((
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)))(),(((
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+

∈
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


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
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
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


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−∑
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n

r

R

dtutx
tx

p

dtutx
tx
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∂
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∂
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A= rrR ×∈















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
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



00000
1.000

.....
0.100
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,  

B=[0   0  ...  0]T  ∈ Rr×1, C=[0   0  ...  0]T  ∈R1×r 
Consider that the output y(t) will track the output yd(t) 

of the reference model. The desired model reference is 
z,(t)=A0z(t)+B0ysp(t)                                             (40) 
where z(t) is the state variable, A0,B0,C0 are matrices 

and vectors with appropriate dimensions. Ysp(t)is the 
external input, and yy(t)is the desired output trajectory. 

The following assumptions are needed to achieve the 
desired output trajectory: 

Assumption 2:  
The desired trajectory output and its first r derivatives 

are all uniformly bounded, and satisfy: 
º(yd(t) yd

(1)(t) ....  yd
(t))º <=Bd                                             (41) 

, where Bd is the some positive constant. 
Remark: 
(iii) The fact that the model reference must be of 

relative order of r, to avoid the use of differentiators in 
the controller. Furthermore, if the desired trajectory and 
its derivatives are uniformly bounded, one can make the 
output tracking error, y(t)-yd(t), as minimum as possible 
and the whole system states locally stable. This is further 
verified in the subsequent theorem: 

Define: ei(t)=Ei(t) -yd
(i-1)(t), i=1,2,. . .,r                 (42) 

Then equations (24) and (37)-(39) become: 
e,(t) = Ae(t)+B(v(t)-yd

r(t)) + DA(x(t),u(t),u(t-d)) (43) 
N,(t) = q(E(t),N(t)) + DΦ(x(t),u(t-d))                   (44) 
e1(t)=Ce(t)                                                             (45) 
Define the tracking error with parameterization  
ei

*(t)=ppi-1ei(t), i=1,2,. . .,r                                    (46) 
, for a positive constant pp<=1. Then we obtain the 
following equations: 

ppe,*(t)=Ae*(t) + pprB(v-yd
+ppDA*(x(t),u(t),u(t-d) 

                                                                              (47) 
N,(t)=q(E(t),N(t)) + DΦ(x(t),u(t-d))                     (48) 
e1(t)=Ce*(t)                                                           (49) 

, where DA*=[DA1      ppDA2 . . .  ppr-1Ar]T 
Now, we propose the control law v(t) of the following 

form: 

∑−=Φ=
=

−
r

t
ii

rr
d

r
d teapptytytetv

1

)()(
0 )(*)())(),(*()(  

            = )(),()()( teppaty r
d Γ+                    (50) 

, where Γ (a,pp) = [-pp-ra1,. . ., -pp-1ar] 
Note that a1,a2,. . .,ar are chosen such that 
sr + arsr-1 + . . . +a1                           (51) 
is a Hurwitz polynomial and s is the Laplace operator. 

By some derivations we obtain a standard singularly 
perturbed system of the form: 

ppe,*(t)=Ace*(t)+ppDA*(x(t),u(t),u(t-d))            (52) 
N,(t)=q(E(t),N(t))+DΨ(x(t),u(t-d))            (53) 

, where Ac = 























−−− raaa ..
10000

.....
00100
00010

21

 is companion matrix. 

Moreover, we define P as a symmetric positive define 
matrix satisfying the Lyapunov equation: 

Ac
TP + Pac = -I                           (55) 

, where I is an identity matrix. 
Intuitively, to reduce the effects of the nonlinearity 

including state and input perturbations to the tracking 
error e(t) while maintaining the boundedness of N(t), we 
can choose a large gain in the control law v(t) eqn.50. 
However, the input error between the delay in put u(t-d) 
and the desired control law u(t) will be large due to 
inappropriate high gain feedback control. Therefore how 



to choose a suitable tuning parameter pp in the present 
control law, which guarantees the overall system 
stability and good performance, is the main key issue of 
in this paper. 

Owing to state feedback control the resulting closed 
loop system of (52) and (53) may include state delay and 
input delay. Hence, the bound information of the delayed 
state x(t-d) and current state x(t) is a priori. This is 
addressed in the following assumption. 

Assumption 3: 
Consider that W(e*(t))=ppe*(t)Tpe*(t) is a positive  

define function, where e*(t) is the parameterized variable 
as shown in eqn.46, and P satisfies eqn.55. If there exists 

W(e*(t-d))<=ε2 c*ºe*(t)º                                (56) 
where c* is the ratio between maximum and minimum 

eigenvalues of matrix P. 
Remarks: 
(iv) This assumption is based on the stability theorem 

of Razumikhin [7]. Under the continuous inversion of 
parameterized co-ordinate transformation (equations 
(10), (11), (42), (46)), i.e.: 

xl(t) = pk
-l(Ei(t),Nj(t)) = pk

-l (ei(t)+yd
i-1(t),Nj(t)) 

        = pk
-l(pp1-iei

*(t)+ yd
(i-1)(t)Nj(t)),  i=1, 2, …  

The result of (56) represents that if the current state 
x(t) is bounded, the delayed state x(t-d)is uniformly 
bonded. This assumption had been used in the literature 
for state-delayed systems [8]. 

From the assumptions above, the error can be 
expressed further as follows: 

³u(t-d)-u(t)³= ³Φ(x(t-d),v(t-d) - Φ(x(t),u(t)))  
³=³-a-1(E(t-d),N(t-d)) 
b(E(t-d),N(t-d))+yd

(t-d)a-1(E(t-d), N(t-d)) –   
yd

(t)a-1(E(t),N(t))+Γ(a,pp) 
a-1(E(t-d),N(t-d))e(t-d)-a-1(E(t),N(t))e(t))³               (57) 
After taking derivation of Lepschitz Jacobian near the 

origin, one can show that: 
³u(t-d)-u(t) ³<=pp-r(c1ºE(t-d)-E(t) º+ c2ºN(t-d)-N(t) º+ 
c3<=k*/ppr                                                             (58) 

, where c1,c2,c3 and k*are positive constants. 
Based on the ongoing analysis, a simple design 

procedure for better output tracking in the presence of 
plant uncertainties and time delay is proposed. The basic 
principle is to design the parameterized state feedback 
control law for getting a good system response and to 
tune the parameter pp for achieving robust stability and 
performance specification.  

The control structure is shown in Figure 1, and the 
design procedure consists of five steps: 

 
 
 
 
 
 
 
 
 
 
 
 

Step 1: Select the controlled output and calculate the 
co-ordinate transformation based on the nominal system 
as shown in equations (10)-(12). 

Step 2: Transform the nonlinear system into an 
equivalent linear system as shown in equations 
(20)-(23). 

Step 4: Calculate the desired reference model based 
on the specific specification as shown in equation (40). 

Step 5: Adjust the tuning parameter pp to satisfy the 
performance specification. 

 
4 Conclusions  
 

The theory for designing a robust adaptive control 
law based on input-output feedback linearization of 
nonlinear systems with uncertainties and a time-delay in 
the manipulated input by the approach of parameterized 
state feedback control has been presented. The main 
advantage of this method is that the parameterized state 
feedback control law can effectively suppress the effect 
of the most part of nonlinearities, including system 
uncertainties and time-delay input in the pp-coupling 
perturbation form and the relative order of nonlinear 
systems is not limited. 
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Figure 1: Structure of the controller 


