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Abstract

In the research of a multiagent system, the indi-
cators such as a task achievement ratio and a payoff
have been used for analyzing a system. These indi-
cators are important for the point that agents need
to accomplish a task. However they are inadequate
to make clear the entity of phenomena that occur in
complex system, because they are specialized in the
target system and the analysis is also specialized. In
these respects the approaches that analyze a system
quantitatively are begun to investigate in recent years.
In our research, we propose the approach that ana-
lyzes a multiagent system quantitatively by focusing
on the dynamics of a system and interaction among
multiagents. We use two indicators, i.e., entropy and
mutual information, for analyzing a system. Entropy
estimates the behavior of an agent and mutual infor-
mation estimates interactions between two agents. For
verifying these propositions, we conduct verification
experiment in the simple slime mold model. The re-
sult shows a relationship between agents’ behavioral
patterns and two indicators, therefore our approach
using entropy and mutual information is available for
analyzing a multiagent system.
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1 Introduction

The researchers who construct multiagent sys-
tems must deal with the complex behavior of self-
organization. Self-organization in multiagent systems
emerges from agents’ behavior, which is independently
autonomous but corporately structured by interac-
tions among agents and the environment. Researchers
want to reveal these interactions because the coherence
of the agents’ local behavior and the system’s overall

behavior is required in designing systems.

Historically, researchers analyze system’s overall
behavior with the indicators such as a task achieve-
ment ratio and a payoff. These indicators are impor-
tant for the point that agents need to accomplish a
task. However they are inadequate to make clear the
entity of complex systems and it is difficult to say why
and how the task is achieved or how we get higher
score. Since they are specialized in the target system
and the analysis is also specialized. Therefore analy-
ses that quantify the entity of systems universally are
required. In these respects, there are researches that
comprehend the dynamics of systems and agents with
the concept of entropy [1], [2], [3], [4]. In these re-
searches they consider about the behavioral diversity
and the constraint with variance of entropy, and at-
tempt to quantify the system.

In this paper, we propose the approach that ana-
lyzes a multiagent system quantitatively by focusing
on the dynamics of a system and the interaction among
multiagents as the entity of systems. In particular, we
quantify the system’s overall behavior and the inten-
sity of interactions among agents and analyze systems.

2 Analysis of multiagent interaction

The interactions among multiagent in self-
organization systems are considered to be interchange
of information about the state of agent. The discus-
sion of the relationship between these information and
entropy is done historically [5]. In particular, decrease
of entropy is great issue, and it is said that

e gain of information causes decrease of entropy and
emerge constraint and

e gain of information constantly keeps up these con-
straint.



Therefore it is considered that information and en-
tropy are important to capture the entity of multia-
gent interaction.

The concept of entropy is defined three contexts,
i.e., thermodynamics, statistical mechanics and infor-
mation theory; particularly information theory defi-
nition is called information entropy or Shannon’s en-
tropy [6]. Though informational definition does not
inherit two other definitions, there are common enti-
ties because of the sameness of these formulas. With
using information entropy, analysis of multiagent sys-
tems are studied in thermo dynamics perspective [1]
and nonequilibrium thermodynamics perspective [2].
Therefore we use informational theoretical approach
to quantify the entity of multiagent system.

Our analysis method uses two indicators entropy
and mutual information, where mutual information is
the indicator of the value of information. In our ap-
proach we can analyze

1. agent’s behavior, e.g., stability, constraint or com-
plexity with entropy and

2. the intensity of interactions between two agents
with mutual information.

When one computes these indicators, what to ob-
serve as states is the great issue. Then consider about
an agent, it is the autonomous individual that takes in-
put from environment through its sensors and outputs
through these input and decision-making process. At
this time, agent’s decision-making is followed its inter-
nal state, which can be variously designed. For captur-
ing the essential states of agent that is not specialized
in systems, agent’s internal state depends systems and
is not just as well. Whereat we use agent’s input and
output as the state of agent.

3 Experimental setup

We experiment with these concepts using a simple
model of self-organization, slime mold model. In this
section we describe the experiment in the slime mold
model and how one measures entropy and mutual in-
formation.

3.1 Slime mold model

The group behavior of slime mold cells is the famous
focus for models of self-organization [7]. Normally
they move around as individual amoebas throughout
their substrate, performing a simple random walk.
But when the environmental situation worsens, they

Figure 1: The environment of slime mold model

suddenly change their behavior and aggregate to a sin-
gle multi-cellular body. During this aggregation pro-
cess, they emit a chemical signal called cAMP to guide
the collective movements. As they move, they follow
the cAMP gradient in the environment.

The whole process is a self-organization. Though
all amoebas act with local information around them
and without any other guidance such as coordinating
the aggregation, they aggregate.

In the slime mold model, amoeba agents are placed
on the grid world as Figure 1. An agent and environ-
ment model are described as follows.

Agent model

An agent acts as described below at each step.
1. Put cAMP on the current grid.

2. Sense the density of cAMP on the forward 3 grids
in 8 neighbors.

3. Move to the grid that has the most cAMP.

Environment model

In the environment, cAMP is defined on the grid
as parameters T(z,y) and P(z,y). T(z,y) denotes
the amount of cAMP on the grid (z,y), and P(z,y)
denotes the density of cAMP over the grid (z,y). An
agent can sense the density of cAMP over the grid.

As time passes, cCAMP evaporates and diffuses. By
evaporation and diffusion, T'(z,y) and P(z,y) changes
into T*(z,y) and P*(z,y) at each step

T*(xay) = (1 _'Yeva)T(xay) + AT (1)
@ if an agent exists on grid (z,y)
AT ={ 0 otherwise (2)

P*(w,y) = P(zay) +'Ydif{P(f13 - lvy) +
P(z+1,y)+ P(z,y — 1)+ P(z,y + 1)
_5P(a::y)}+’7€vaT(a::y) (3)



where @ denotes the amount of cAMP put by an agent
in 1 step, and 7yesa and 74y denotes the evaporation
rate and the diffusion rate of cAMP, which defines the
property of cAMP.

3.2 The parameter of slime mold model

In the slime mold model, the cAMP’s property that
is defined by evaporation and diffusion rate affects
the pattern of agents’ self-organizational process. We
compare these various patterns and the distribution
of entropy and mutual information in our experiment,
and verify our proposition.

The environment is 50 x 50 grid world, and con-
tained 50 agents. We change cAMP’s property to vary
information’s property among agents in respect of time
length and accuracy, and the value of evaporation and
diffusion rate is set to 4 different values, i.e.,

a. Yeva = 0.1, v45y = 0.1
b. Yeva = 0.1, vair = 0.3
€. Yeva = 0.5, vair = 0.1
d. Yeva = 0.5, y4if = 0.3.

We experiment with these setups at 1000 steps.

3.3 Measuring entropy and mutual infor-
mation

Computing entropy and mutual information re-
quires that we measure

1. the set of an agent X’s states z € {x1,---,z,}
(i.e. input and output) and

2. the probability p(z) of being those states,

where the agent’s input is the discrete density of cAMP
that exist on agent’s forward 3 grids, and output is the
agent’s moving direction toward its facing direction.

Measuring those states is observation of the agent at
each step. To measure the probability, we take Monte
Carlo approach. By counting those states in whole
step of 1 experiment, we estimate the probability.

With using these variables, entoropy of an agent X
and mutual information among an agent X and Y is
defined in following equations,

H(X) == p(x)logp(x) (4)

1Y) = ¥ S aletos KE - (5

Table 1: The distribution of agents’ entropy and mu-
tual information in the slime mold model (in 100 trials)

I V(I) H V(H) T1d
021 [52x107%[0.53]1.5%x10°2|-0.31
0.048 [ 3.1 x107% [ 0.34 | 4.5 x 1073 | -0.41
023 [ 49x103[054]11x10°2|-0.34
0.056 | 6.8 x 107° | 0.39 | 3.3 x 10~* | -0.11

oo e

4 Experimental results

Table 1 shows entropy and mutual information in
each setup, a ~ d, where I and V(I) denote the aver-
age and variance of mutual information for randomly
selected 100 pairs of agents. H and V(H) denote the
average and variance of entropy for all agents. rp4
denotes correlation coefficient between mutual infor-
mation and Euclidean distance of pairs of agents. The
results show that the average of mutual information
is larger in the setting a and ¢ than b and d, and
it is considered that agents interact more intensive in
the setting a and c. The average of agents’ entropy is
smaller in the setting b and d, and the states of agents
will be stable.

On the other hand, we look the states of agents
in visible by Figure 2 ~ 5. In the setting a and c,
many agents form clusters by self-organization. On the
contrary many agents act independently in the setting
b and d. These behavioral patterns are same as we see
the difference of mutual information in each setup on
the point of the intensity of interactions. Moreover,
the value of r;4 shows tendency that the closer two
agents are, the intensive they interact.

In addition, we look the process of forming cluster
to look the stable of the system. In the setting a and
¢, because of the intensity of interactions, the agents
form various cluster one after another in 1 experiment.
While in the setting b and d, when the agents form a
cluster, they seldom go out from this cluster and keep
it up because the cAMP dropped by the agent out of
them is weak and not enough to draw them in. These
behavioral patterns are also same as the analysis by
entropy, i.e., the states of agents are more stable in
the setting b and d than a and c.

5 Summary

In this paper, we proposed the quantitative analy-
sis of multiagent interaction with entropy and mutual



Figure 3: The look of the
system at 1000 step in the
setting b. The agents form
small clusters, and some
agents act independently.

Figure 2: The look of the
system at 1000 step in the
setting a. The agents form
some clusters.

Figure 4: The look of the Figure 5: The look of the
system at 1000 step in the system at 1000 step in the
setting c. The agents form setting d. Many agents act

big cluster. independently.

information. We conducted verification experiment in
the slime mold model to quantify the interactions in
self-organizational process. The results show the rela-
tionship between agents’ behavioral patterns and our
analysis, and validity of our proposal method.
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