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.jpAbstra
tIn the resear
h of a multiagent system, the indi-
ators su
h as a task a
hievement ratio and a payo�have been used for analyzing a system. These indi-
ators are important for the point that agents needto a

omplish a task. However they are inadequateto make 
lear the entity of phenomena that o

ur in
omplex system, be
ause they are spe
ialized in thetarget system and the analysis is also spe
ialized. Inthese respe
ts the approa
hes that analyze a systemquantitatively are begun to investigate in re
ent years.In our resear
h, we propose the approa
h that ana-lyzes a multiagent system quantitatively by fo
usingon the dynami
s of a system and intera
tion amongmultiagents. We use two indi
ators, i.e., entropy andmutual information, for analyzing a system. Entropyestimates the behavior of an agent and mutual infor-mation estimates intera
tions between two agents. Forverifying these propositions, we 
ondu
t veri�
ationexperiment in the simple slime mold model. The re-sult shows a relationship between agents' behavioralpatterns and two indi
ators, therefore our approa
husing entropy and mutual information is available foranalyzing a multiagent system.Keywords. Multiagent system, Quantitative analysis,entropy, mutual information, intera
tion1 Introdu
tionThe resear
hers who 
onstru
t multiagent sys-tems must deal with the 
omplex behavior of self-organization. Self-organization in multiagent systemsemerges from agents' behavior, whi
h is independentlyautonomous but 
orporately stru
tured by intera
-tions among agents and the environment. Resear
herswant to reveal these intera
tions be
ause the 
oheren
eof the agents' lo
al behavior and the system's overall

behavior is required in designing systems.Histori
ally, resear
hers analyze system's overallbehavior with the indi
ators su
h as a task a
hieve-ment ratio and a payo�. These indi
ators are impor-tant for the point that agents need to a

omplish atask. However they are inadequate to make 
lear theentity of 
omplex systems and it is diÆ
ult to say whyand how the task is a
hieved or how we get highers
ore. Sin
e they are spe
ialized in the target systemand the analysis is also spe
ialized. Therefore analy-ses that quantify the entity of systems universally arerequired. In these respe
ts, there are resear
hes that
omprehend the dynami
s of systems and agents withthe 
on
ept of entropy [1℄, [2℄, [3℄, [4℄. In these re-sear
hes they 
onsider about the behavioral diversityand the 
onstraint with varian
e of entropy, and at-tempt to quantify the system.In this paper, we propose the approa
h that ana-lyzes a multiagent system quantitatively by fo
usingon the dynami
s of a system and the intera
tion amongmultiagents as the entity of systems. In parti
ular, wequantify the system's overall behavior and the inten-sity of intera
tions among agents and analyze systems.2 Analysis of multiagent intera
tionThe intera
tions among multiagent in self-organization systems are 
onsidered to be inter
hangeof information about the state of agent. The dis
us-sion of the relationship between these information andentropy is done histori
ally [5℄. In parti
ular, de
reaseof entropy is great issue, and it is said that� gain of information 
auses de
rease of entropy andemerge 
onstraint and� gain of information 
onstantly keeps up these 
on-straint.



Therefore it is 
onsidered that information and en-tropy are important to 
apture the entity of multia-gent intera
tion.The 
on
ept of entropy is de�ned three 
ontexts,i.e., thermodynami
s, statisti
al me
hani
s and infor-mation theory; parti
ularly information theory de�-nition is 
alled information entropy or Shannon's en-tropy [6℄. Though informational de�nition does notinherit two other de�nitions, there are 
ommon enti-ties be
ause of the sameness of these formulas. Withusing information entropy, analysis of multiagent sys-tems are studied in thermo dynami
s perspe
tive [1℄and nonequilibrium thermodynami
s perspe
tive [2℄.Therefore we use informational theoreti
al approa
hto quantify the entity of multiagent system.Our analysis method uses two indi
ators entropyand mutual information, where mutual information isthe indi
ator of the value of information. In our ap-proa
h we 
an analyze1. agent's behavior, e.g., stability, 
onstraint or 
om-plexity with entropy and2. the intensity of intera
tions between two agentswith mutual information.When one 
omputes these indi
ators, what to ob-serve as states is the great issue. Then 
onsider aboutan agent, it is the autonomous individual that takes in-put from environment through its sensors and outputsthrough these input and de
ision-making pro
ess. Atthis time, agent's de
ision-making is followed its inter-nal state, whi
h 
an be variously designed. For 
aptur-ing the essential states of agent that is not spe
ializedin systems, agent's internal state depends systems andis not just as well. Whereat we use agent's input andoutput as the state of agent.3 Experimental setupWe experiment with these 
on
epts using a simplemodel of self-organization, slime mold model. In thisse
tion we des
ribe the experiment in the slime moldmodel and how one measures entropy and mutual in-formation.3.1 Slime mold modelThe group behavior of slime mold 
ells is the famousfo
us for models of self-organization [7℄. Normallythey move around as individual amoebas throughouttheir substrate, performing a simple random walk.But when the environmental situation worsens, they

Figure 1: The environment of slime mold modelsuddenly 
hange their behavior and aggregate to a sin-gle multi-
ellular body. During this aggregation pro-
ess, they emit a 
hemi
al signal 
alled 
AMP to guidethe 
olle
tive movements. As they move, they followthe 
AMP gradient in the environment.The whole pro
ess is a self-organization. Thoughall amoebas a
t with lo
al information around themand without any other guidan
e su
h as 
oordinatingthe aggregation, they aggregate.In the slime mold model, amoeba agents are pla
edon the grid world as Figure 1. An agent and environ-ment model are des
ribed as follows.Agent modelAn agent a
ts as des
ribed below at ea
h step.1. Put 
AMP on the 
urrent grid.2. Sense the density of 
AMP on the forward 3 gridsin 8 neighbors.3. Move to the grid that has the most 
AMP.Environment modelIn the environment, 
AMP is de�ned on the gridas parameters T (x; y) and P (x; y). T (x; y) denotesthe amount of 
AMP on the grid (x; y), and P (x; y)denotes the density of 
AMP over the grid (x; y). Anagent 
an sense the density of 
AMP over the grid.As time passes, 
AMP evaporates and di�uses. Byevaporation and di�usion, T (x; y) and P (x; y) 
hangesinto T �(x; y) and P �(x; y) at ea
h stepT �(x; y) = (1� 
eva)T (x; y) + �T (1)�T = f Q if an agent exists on grid (x; y)0 otherwise (2)P �(x; y) = P (x; y) + 
diffP (x� 1; y) +P (x+ 1; y) + P (x; y � 1) + P (x; y + 1)�5P (x; y)g+ 
evaT (x; y) (3)



where Q denotes the amount of 
AMP put by an agentin 1 step, and 
eva and 
dif denotes the evaporationrate and the di�usion rate of 
AMP, whi
h de�nes theproperty of 
AMP.3.2 The parameter of slime mold modelIn the slime mold model, the 
AMP's property thatis de�ned by evaporation and di�usion rate a�e
tsthe pattern of agents' self-organizational pro
ess. We
ompare these various patterns and the distributionof entropy and mutual information in our experiment,and verify our proposition.The environment is 50 � 50 grid world, and 
on-tained 50 agents. We 
hange 
AMP's property to varyinformation's property among agents in respe
t of timelength and a

ura
y, and the value of evaporation anddi�usion rate is set to 4 di�erent values, i.e.,a. 
eva = 0:1, 
dif = 0:1b. 
eva = 0:1, 
dif = 0:3
. 
eva = 0:5, 
dif = 0:1d. 
eva = 0:5, 
dif = 0:3.We experiment with these setups at 1000 steps.3.3 Measuring entropy and mutual infor-mationComputing entropy and mutual information re-quires that we measure1. the set of an agent X 's states x 2 fx1; � � � ; xng(i.e. input and output) and2. the probability p(x) of being those states,where the agent's input is the dis
rete density of 
AMPthat exist on agent's forward 3 grids, and output is theagent's moving dire
tion toward its fa
ing dire
tion.Measuring those states is observation of the agent atea
h step. To measure the probability, we take MonteCarlo approa
h. By 
ounting those states in wholestep of 1 experiment, we estimate the probability.With using these variables, entoropy of an agent Xand mutual information among an agent X and Y isde�ned in following equations,H(X) = �Xx p(x) log p(x) (4)I(X : Y ) =Xx Xy p(x; y) log p(x; y)p(x)p(y) (5)

Table 1: The distribution of agents' entropy and mu-tual information in the slime mold model (in 100 trials)�I V (I) �H V (H) rIda. 0.21 5:2� 10�3 0.53 1:5� 10�2 -0.31b. 0.048 3:1� 10�4 0.34 4:5� 10�3 -0.41
. 0.23 4:9� 10�3 0.54 1:1� 10�2 -0.34d. 0.056 6:8� 10�5 0.39 3:3� 10�4 -0.114 Experimental resultsTable 1 shows entropy and mutual information inea
h setup, a � d, where �I and V (I) denote the aver-age and varian
e of mutual information for randomlysele
ted 100 pairs of agents. �H and V (H) denote theaverage and varian
e of entropy for all agents. rIddenotes 
orrelation 
oeÆ
ient between mutual infor-mation and Eu
lidean distan
e of pairs of agents. Theresults show that the average of mutual informationis larger in the setting a and 
 than b and d, andit is 
onsidered that agents intera
t more intensive inthe setting a and 
. The average of agents' entropy issmaller in the setting b and d, and the states of agentswill be stable.On the other hand, we look the states of agentsin visible by Figure 2 � 5. In the setting a and 
,many agents form 
lusters by self-organization. On the
ontrary many agents a
t independently in the settingb and d. These behavioral patterns are same as we seethe di�eren
e of mutual information in ea
h setup onthe point of the intensity of intera
tions. Moreover,the value of rId shows tenden
y that the 
loser twoagents are, the intensive they intera
t.In addition, we look the pro
ess of forming 
lusterto look the stable of the system. In the setting a and
, be
ause of the intensity of intera
tions, the agentsform various 
luster one after another in 1 experiment.While in the setting b and d, when the agents form a
luster, they seldom go out from this 
luster and keepit up be
ause the 
AMP dropped by the agent out ofthem is weak and not enough to draw them in. Thesebehavioral patterns are also same as the analysis byentropy, i.e., the states of agents are more stable inthe setting b and d than a and 
.5 SummaryIn this paper, we proposed the quantitative analy-sis of multiagent intera
tion with entropy and mutual



Figure 2: The look of thesystem at 1000 step in thesetting a. The agents formsome 
lusters. Figure 3: The look of thesystem at 1000 step in thesetting b. The agents formsmall 
lusters, and someagents a
t independently.

Figure 4: The look of thesystem at 1000 step in thesetting 
. The agents formbig 
luster. Figure 5: The look of thesystem at 1000 step in thesetting d. Many agents a
tindependently.information. We 
ondu
ted veri�
ation experiment inthe slime mold model to quantify the intera
tions inself-organizational pro
ess. The results show the rela-tionship between agents' behavioral patterns and ouranalysis, and validity of our proposal method.Referen
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