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1 Introduction

The synchronization in cellular automata has been
known as firing squad synchronization problem since
its development, in which it was originally proposed by
J. Myhill to synchronize all parts of self-reproducing
cellular automata [5]. The firing squad synchroniza-
tion problem has been studied extensively for more
than 40 years [1-10]. The present authors are involved
in research on firing squad synchronization algorithms
on two-dimensional (2-D) cellular arrays.

In this paper, we first propose a new linear-time
generalized synchronization algorithm that can syn-
chronize any m × n rectangular array in m + n +
max(r + s,m + n − r − s + 2) − 4 steps with the gen-
eral at an arbitrary initial position (r, s) of the array.
The algorithm is based on a state-efficient mapping
scheme for embedding a restricted class of generalized
one-dimensional optimum-time synchronization algo-
rithms onto 2-D rectangular arrays. The embedding
can be implemented with providing two additional
states. We show that the linear-time 14-state solution
developed yields an optimum-time synchronization al-
gorithm in the case where the general is located at the
north-east corner. Due to the space available, we omit
proofs of the theorems.

2 Firing Squad Synchronization Prob-
lem on Two-Dimensional Cellular
Automata

Figure 1 shows a finite two-dimensional (2-D) cel-
lular array consisting of m × n cells. Each cell is an
identical (except the border cells) finite-state automa-
ton. The array operates in lock-step mode in such a
way that the next state of each cell (except border

cells) is determined by both its own present state and
the present states of its north, south, east and west
neighbors. All cells (soldiers), except one general cell,
are initially in the quiescent state at time t = 0 with
the property that the next state of a quiescent cell
with quiescent neighbors is the quiescent state again.
At time t = 0, any one cell on the array is in the
fire-when-ready state, which is the initiation signal for
synchronizing the array. The firing squad synchro-
nization problem is to determine a description (state
set and next-state function) for cells that ensures all
cells enter the fire state at exactly the same time and
for the first time. The set of states must be indepen-
dent of m and n. We call the synchronization problem
normal, when the initial position of the general is re-
stricted to north-west corner of the array. We consider
a generalized firing squad synchronization problem, in
which the general can be initially located at any posi-
tion on the array. As for the normal synchronization
problem, several algorithms have been proposed, in-
cluding Beyer [1], Grasselli [2], Kobayashi [3], Shinahr
[7], Szwerinski [8] and Umeo, Maeda and Fujiwara [9].
Umeo, Maeda and Fujiwara [9] presented a 6-state
two-dimensional synchronization algorithm that fires

1 2 3 n

1

2

3

m

...

...

...

...

..
.

..
.

..
.

..
.

4

..
.

...

Figure 1: A two-dimensional cellular automaton.
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Figure 2: Correspondence between 1-D and 2-D cellu-
lar arrays.

any m×n arrays in 2(m+n)−4 steps. The algorithm
is slightly slower than the optimum ones, but the num-
ber of internal states is considerably smaller. Beyer [1]
and Shinahr [7] presented an optimum-time synchro-
nization scheme in order to synchronize any m × n
arrays in m + n + max(m,n) − 3 steps. To date, the
smallest number of cell states for which an optimum-
time synchronization algorithm has been developed is
28 for rectangular array, achieved by Shinahr [7]. On
the other hand, Szwerinski [8] proposed an optimum-
time generalized 2-D firing algorithm with 25,600 in-
ternal states.

3 Linear- and Optimum-Time Firing
Squad Synchronization Algorithms

Now we consider a generalized firing squad synchro-
nization problem, in which the general can be initially
located at any position on the array. Before presenting
the algorithm, we propose a simple mapping scheme
for embedding one-dimensional generalized synchro-
nization algorithms onto two-dimensional arrays.

Consider a correspondence between 1-D array of
length m+n−1 and 2-D array of size m×n, shown in
Fig. 2. Each black square corresponds to initial gen-
eral cell on the array. The 2-D array of size m × n is
divided into m + n − 1 groups gk, 1 ≤ k ≤ m + n − 1,
that is defined as follows:

gk = {Ci,j|(i − 1) + (j − 1) = k − 1}, i.e.,

g1 = {C1,1},
g2 = {C1,2,C2,1},
g3 = {C1,3,C2,2,C3,1},
.
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0 Q Q Q R Q Q Q Q Q Q Q Q Q
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8 W ] H ] R > Q Q Q Q Q > Q
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Figure 3: Time-space diagram for optimum-time gen-
eralized firing squad synchronization algorithm and
snapshots for a 12-state implementation of the gen-
eralized firing squad synchronization algorithm with
the property Q on 13 cells with a general on C4.
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gm+n−1 = {Cm,n}.

The objective of our correspondence is to embed
configurations of 1-D generalized synchronization al-
gorithms onto 2-D arrays.

Property Q: We say that a generalized firing algorithm
has a property Q, where any cell, except the general
cell Ck, keeps a quiescent state in the area A of the
time-space diagram shown in Fig. 3(a).

For any 2-D array M of size m × n with the gen-
eral at Cr,s, where 1 ≤ r ≤ m, 1 ≤ s ≤ n, there
exists a corresponding 1-D cellular array N of length
m + n − 1 with the general at Cr+s−1 such that the
configuration of N can be mapped on M , and M fires
if and only if N fires. The transition table for N con-
sists of four parts, one is a transformation rule set
(Type (I)) that is for the inner cells of 2-D array and
the other two sets (Type (II) and Type (III)) are for
the state transition of cells C1,1 and Cm,n. The fourth
part is a new set of transition rules (omitted) for the
transmission of general state in the diagonal direction.
Let δ1(a, b, c) = d be any transition rule of M , where
a, b, c, d ∈ {Q − {w}}. Then, N has seven Type (I)
transition rules, as shown in Fig. 4. The first rule
(1) in Type (I) is used by an inner cell that does not
include border cells amongst its four neighbors. Rules
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Figure 4: Construction of transition rules for 2-D
linear-time firing squad synchronization algorithm.

(2)-(5) are used by an inner cell that has a border
cell as its upper, lower, left, right, lower left, or upper
right neighbor, respectively. Here the terms upper,
right etc. on the rectangular array are interpreted in
a usual way, shown in Fig. 2, although the array is ro-
tated by 45◦ in the counterclockwise direction. Rules
(6)-(7) in Type (I) are used by an inner cell that has
border cells in its left-lower and right-upper neighbors,
respectively.

Let St
i , St

i,j and St
gi

denote the state of Ci, Ci,j at
step t and the set of states of the cells in gi at step
t, respectively. Then, we can establish the following
lemma.

[Lemma 1] The following two statements hold:

1. For any integer i and t such that 1 ≤ i ≤ m+n−
r−s+1, r+s+ i−3 ≤ t ≤ T (m+n−1, r+s−1),
‖ St

gi
‖= 1 and St

gi
= St

i . That is, all cells in gi at
step t are in the same state and it is equal to St

i ,
where the state in St

gi
is simply denoted by St

gi
.

2. For any integer i and t such that m+n−r−s+2 ≤
i ≤ m + n − 1, 2m + 2n − r − s − i − 1 ≤ t ≤
T (m + n− 1, r + s− 1), ‖ St

gi
‖= 1 and St

gi
= St

i .

[Theorem 2] Let M be any s-state generalized syn-
chronization algorithm with the property Q operating
in T (k, �) steps on one-dimensional � cells with a gen-
eral on the k-th cell from the left end. Then, based
on M , we can construct a two-dimensional (s + 2)-
state cellular automaton N that can synchronize any
m × n rectangular array in T (m,m + n − 1) steps.
The one-dimensional generalized firing squad synchro-

nization algorithm with the property Q can be easily
embedded onto two-dimensional arrays with a small
overhead. Fig. 3(b) shows snapshots of our 12-state
optimum-time generalized firing squad synchroniza-
tion algorithm with the property Q.

[Theorem 3] There exists a 12-state one-dimensional
cellular automaton with the property Q that can syn-
chronize � cells with a general on the k-th cell from
the left end in optimum �−2+max(k, �−k +1) steps.

Based on the 12-state generalized 1-D algorithm
given above, we obtain the following 2-D generalized
synchronization algorithm that synchronizes any 2-D
array of size m× n in m + n− 3 + max(r + s− 1,m +
n−r−s+1) = m+n+max(r+s,m+n−r−s+2)−4
steps.

[Theorem 4] There exists a 14-state 2-D CA that can
synchronize any m × n rectangular array in optimum
m + n + max(r + s,m + n− r − s + 2) − 4 steps with
the general at an arbitrary initial position (r, s).

Two additional states are required in our construc-
tion (details omitted). Szwerinski [8] also proposed an
optimum-time generalized 2-D firing algorithm with
25,600 internal states that fires any m × n array in
m+n+max(m,n)−min(r,m− r +1)−min(s, n−s+
1) − 1 steps, where (r, s) is the general’s initial posi-
tion. Our 2-D generalized synchronization algorithm is
max(r+s,m+n−r−s+2)−max(m,n)+min(r,m−
r + 1) + min(s, n − s + 1) − 3 steps larger than the
optimum algorithm proposed by Szwerinski [8]. How-
ever, the number of internal states required to yield
the firing condition is the smallest known at present.
Snapshots of our 14-state generalized synchronization
algorithm running on a rectangular array of size 7× 9
with the general at C4,5 are shown in Fig. 5.

Our linear-time synchronization algorithm is inter-
esting in that it includes an optimum-step synchro-
nization algorithm as a special case where the general
is located at the north-east corner. By letting r = 1,
s = n, we get m+n+max(r+s,m+n−r−s+2)−4 =
m+n+max(n+1,m+1)−4 = m+n+max(m,n)−3.
Thus the algorithm is a time-optimum one. We have:



[Theorem 5] There exists a 14-state 2-D CA that can
synchronize any m × n rectangular array in m + n +
max(m,n) − 3 steps.

4 Conclusions

We have proposed a state-efficient mapping scheme
for embedding a restricted class of generalized one-
dimensional synchronization algorithms onto 2-D
rectangular arrays, then based on the scheme, a
new linear-time generalized synchronization algorithm
with fourteen states has been presented that can syn-
chronize any m × n rectangular array in m + n +
max(r+s,m+n− r−s+2)−4 steps with the general
at an arbitrary initial position (r, s) of the array. It is
shown that the linear-time 14-state solution developed
yields an optimum-time synchronization algorithm in
the case where the general is located at the north-east
corner.
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Step:0 1 2 3 4 5 6 7 8 9

1 Q Q Q Q Q Q Q Q Q

2 Q Q Q Q Q Q Q Q Q

3 Q Q Q Q Q Q Q Q Q

4 Q Q Q Q R Q Q Q Q

5 Q Q Q Q Q Q Q Q Q

6 Q Q Q Q Q Q Q Q Q

7 Q Q Q Q Q Q Q Q Q

Step:1 1 2 3 4 5 6 7 8 9

1 Q Q Q Q Q Q Q Q Q

2 Q Q Q Q Q Q Q Q Q

3 Q Q Q Q < Q Q Q Q

4 Q Q Q < G > Q Q Q

5 Q Q Q Q > Q Q Q Q

6 Q Q Q Q Q Q Q Q Q

7 Q Q Q Q Q Q Q Q Q

Step:2 1 2 3 4 5 6 7 8 9

1 Q Q Q Q Q Q Q Q Q

2 Q Q Q Q < Q Q Q Q

3 Q Q Q < Q G Q Q Q

4 Q Q < Q G Q > Q Q

5 Q Q Q G Q > Q Q Q

6 Q Q Q Q > Q Q Q Q

7 Q Q Q Q Q Q Q Q Q

Step:3 1 2 3 4 5 6 7 8 9

1 Q Q Q Q < Q Q Q Q

2 Q Q Q < Q G1 Q Q Q

3 Q Q < Q Q G G2 Q Q

4 Q < Q Q G Q Q > Q

5 Q Q G1 G Q Q > Q Q

6 Q Q Q G2 Q > Q Q Q

7 Q Q Q Q > Q Q Q Q

Step:4 1 2 3 4 5 6 7 8 9

1 Q Q Q < Q Q Q Q Q

2 Q Q < Q Q Q G Q Q

3 Q < Q Q Q G Q Q Q

4 < Q Q Q G Q Q Q >

5 Q Q Q G Q Q Q > Q

6 Q Q G Q Q Q > Q Q

7 Q Q Q Q Q > Q Q Q

Step:5 1 2 3 4 5 6 7 8 9

1 Q Q < Q Q Q G1 Q Q

2 Q < Q Q Q Q G G2 Q

3 < Q Q Q Q G Q Q Q

4 Q Q Q Q G Q Q Q Q

5 Q Q Q G Q Q Q Q >

6 Q G1 G Q Q Q Q > Q

7 Q Q G2 Q Q Q > Q Q

Step:6 1 2 3 4 5 6 7 8 9

1 Q < Q Q Q Q Q G Q

2 < Q Q Q Q Q G Q Q

3 Q Q Q Q Q G Q Q Q

4 Q Q Q Q G Q Q Q Q

5 Q Q Q G Q Q Q Q Q

6 Q Q G Q Q Q Q Q >

7 Q G Q Q Q Q Q > Q

Step:7 1 2 3 4 5 6 7 8 9

1 W Q Q Q Q Q Q G Q

2 Q Q Q Q Q Q G Q Q

3 Q Q Q Q Q G Q Q Q

4 Q Q Q Q G Q Q Q Q

5 Q Q Q G Q Q Q Q Q

6 Q Q G Q Q Q Q Q Q

7 Q G Q Q Q Q Q Q W

Step:8 1 2 3 4 5 6 7 8 9

1 W ] Q Q Q Q Q G Q

2 ] Q Q Q Q Q G Q Q

3 Q Q Q Q Q G Q Q Q

4 Q Q Q Q G Q Q Q Q

5 Q Q Q G Q Q Q Q Q

6 Q Q G Q Q Q Q Q [

7 Q G Q Q Q Q Q [ W

Step:9 1 2 3 4 5 6 7 8 9

1 W ] ] Q Q Q Q G Q

2 ] ] Q Q Q Q G Q Q

3 ] Q Q Q Q G Q Q Q

4 Q Q Q Q G Q Q Q Q

5 Q Q Q G Q Q Q Q [

6 Q Q G Q Q Q Q [ [

7 Q G Q Q Q Q [ [ W

Step:101 2 3 4 5 6 7 8 9

1 W ] A ] Q Q Q G Q

2 ] A ] Q Q Q G Q Q

3 A ] Q Q Q G Q Q Q

4 ] Q Q Q G Q Q Q [

5 Q Q Q G Q Q Q [ H

6 Q Q G Q Q Q [ H [

7 Q G Q Q Q [ H [ W

Step:111 2 3 4 5 6 7 8 9

1 W ] H Q ] Q Q G Q

2 ] H Q ] Q Q G Q Q

3 H Q ] Q Q G Q Q [

4 Q ] Q Q G Q Q [ Q

5 ] Q Q G Q Q [ Q A

6 Q Q G Q Q [ Q A [

7 Q G Q Q [ Q A [ W

Step:121 2 3 4 5 6 7 8 9

1 W ] R H A ] Q G Q

2 ] R H A ] Q G Q [

3 R H A ] Q G Q [ H

4 H A ] Q G Q [ H A

5 A ] Q G Q [ H A R

6 ] Q G Q [ H A R [

7 Q G Q [ H A R [ W

Step:131 2 3 4 5 6 7 8 9

1 W ] R H H Q ] G [

2 ] R H H Q ] G [ Q

3 R H H Q ] G [ Q A

4 H H Q ] G [ Q A A

5 H Q ] G [ Q A A R

6 Q ] G [ Q A A R [

7 ] G [ Q A A R [ W

Step:141 2 3 4 5 6 7 8 9

1 W ] R H Q H A W H

2 ] R H Q H A W H A

3 R H Q H A W H A Q

4 H Q H A W H A Q A

5 Q H A W H A Q A R

6 H A W H A Q A R [

7 A W H A Q A R [ W

Step:151 2 3 4 5 6 7 8 9

1 W ] R ] H H [ W ]

2 ] R ] H H [ W ] A

3 R ] H H [ W ] A A

4 ] H H [ W ] A A [

5 H H [ W ] A A [ R

6 H [ W ] A A [ R [

7 [ W ] A A [ R [ W

Step:161 2 3 4 5 6 7 8 9

1 W ] H ] H [ [ W ]

2 ] H ] H [ [ W ] ]

3 H ] H [ [ W ] ] A

4 ] H [ [ W ] ] A [

5 H [ [ W ] ] A [ A

6 [ [ W ] ] A [ A [

7 [ W ] ] A [ A [ W

Step:171 2 3 4 5 6 7 8 9

1 W ] H ] [ H [ W ]

2 ] H ] [ H [ W ] A

3 H ] [ H [ W ] A ]

4 ] [ H [ W ] A ] [

5 [ H [ W ] A ] [ A

6 H [ W ] A ] [ A [

7 [ W ] A ] [ A [ W

Step:181 2 3 4 5 6 7 8 9

1 W ] H W W A [ W ]

2 ] H W W A [ W ] H

3 H W W A [ W ] H W

4 W W A [ W ] H W W

5 W A [ W ] H W W A

6 A [ W ] H W W A [

7 [ W ] H W W A [ W

Step:191 2 3 4 5 6 7 8 9

1 W ] [ W W ] [ W ]

2 ] [ W W ] [ W ] [

3 [ W W ] [ W ] [ W

4 W W ] [ W ] [ W W

5 W ] [ W ] [ W W ]

6 ] [ W ] [ W W ] [

7 [ W ] [ W W ] [ W

Step:201 2 3 4 5 6 7 8 9

1 W W W W W W W W W

2 W W W W W W W W W

3 W W W W W W W W W

4 W W W W W W W W W

5 W W W W W W W W W

6 W W W W W W W W W

7 W W W W W W W W W

Step:211 2 3 4 5 6 7 8 9

1 F F F F F F F F F

2 F F F F F F F F F

3 F F F F F F F F F

4 F F F F F F F F F

5 F F F F F F F F F

6 F F F F F F F F F

7 F F F F F F F F F

Figure 5: Snapshots of the 14-state linear-time gener-
alized firing squad synchronization algorithm on rect-
angular arrays.


