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Abstract

This paper presents a comparative study of state-
change complexity in optimum- and linear-time syn-
chronization algorithms for a large-scale of cellular au-
tomata on one- and two-dimensional arrays. We im-
plement most of the synchronization protocols devel-
oped so far and investigate their state-change com-
plexities on a computer.

1 Introduction

In recent years cellular automata (CA) have been
establishing increasing interests in the study of mod-
eling real phenomena occurring in biology, chemistry,
ecology, economy, geology, mechanical engineering,
medicine, physics, sociology, public traffic, etc. Cel-
lular automata are considered to be a nice model of
complex systems in which an infinite one-dimensional
array of finite state machines (cells) updates itself in
synchronous manner according to a uniform local rule.

The synchronization in cellular automata has been
known as firing squad synchronization problem since
its development, in which it was originally proposed by
J. Myhill to synchronize all parts of self-reproducing
cellular automata [9]. The firing squad synchroniza-
tion problem has been studied extensively for more
than 40 years [1-18].

The complexity of synchronization algorithms has
received much attention, and those synchronization al-
gorithms have been studied from viewpoints of time
complexity, number of internal states of the automata,
and number of transition rules. Vollmar [15, 16] in-
troduced a concept of state-change complexity as a
measure of energy consumption in the cellular spaces
and showed that any optimum-time synchronization
algorithms operating on one-dimensional array need
Ω(n log n) state-changes for synchronizing n-cells.

In this paper, we give a comparative study of state-
change complexity in the synchronization algorithms

developed so far. The synchronization algorithms be-
ing compared in this paper are seven optimum- and
linear-time algorithms developed by Balzer [1], Fis-
cher [2], Gerken [3], Mazoyer [8], Minsky [9], Waksman
[17] and Yunés [18] . The state-change complexity in
several synchronization algorithms on two-dimensional
arrays are also studied in the last section.
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Figure 1: Cellular automata.

2 Firing squad synchronization prob-
lem on one-dimensional cellular au-
tomaton

In this section we give informal definitions of cel-
lular automata, firing squad synchronization problem
and a measure of state-change complexity for synchro-
nization algorithms on one-dimensional cellular au-
tomata.

2.1 One-dimensional cellular automaton

Figure 1 (above) shows a finite one-dimensional cel-
lular array consisting of n cells, denoted by Ci, where
1 ≤ i ≤ n. Each cell is an identical (except the bor-
der cells) finite-state automaton. The array operates
in lock-step mode in such away that the next state of
each cell (except border cells) is determined by both



its own present state and the present states of its left
and right neighbors. All cells, except the left end cell,
are initially in a quiescent state at time t = 0. The
quiescent state has a property that the next state of a
quiescent cell with quiescent neighbors is the quiescent
state again.

2.2 Firing Squad Synchronization Prob-
lem

The firing squad synchronization problem is formal-
ized in terms of the model of cellular automata. All
cells (soldiers), except the left end cell, are initially in
the quiescent state at time t = 0. At time t = 0 the left
end cell (general ) is in the fire-when-ready state, which
is an initiation signal to the array. The firing squad
synchronization problem is stated as follows. Given
an array of n identical cellular automata, including
a general on the left end which is activated at time
t = 0, we want to give the description (state set and
next-state function) of the automata so that, at some
future time, all of the cells will simultaneously and, for
the first time, enter a special firing state. The set of
states and the next-state function must be indepen-
dent of n. Without loss of generality, we assume that
n ≥ 2. The tricky part of the problem is that the same
kind of soldier having a fixed number of states must be
synchronized, regardless of the length n of the array.

2.3 State-change complexity in one-
dimensional synchronization algo-
rithms

Vollmar [15, 16] introduced a state-change complex-
ity in order to measure the efficiency of cellular algo-
rithms and showed that Ω(n log n) state changes are
required for the synchronization of n cells in (2n − 2)
steps.

[Theorem 1][16] Ω(n log n) state-change is necessary
for synchronizing n cells in (2n − 2) steps.

3 State-change complexity in one-
dimensional synchronization algo-
rithms

3.1 Optimum-time synchronization algo-
rithms

Waksman [17] presented a 16-state optimum-time
synchronization algorithm. Afterward, Balzer [1] and
Gerken [3] developed an eight-state algorithm and a
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Figure 2: State-changes in optimum-time synchroniza-
tion algorithms.

seven-state synchronization algorithm: Gerken I, re-
spectively, thus decreasing the number of states re-
quired for the synchronization. In 1987, Mazoyer
[8] developed a six-state synchronization algorithm
which, at present, is the algorithm having the fewest
states. The state change complexity for those algo-
rithms is investigated on a computer, and the next
theorem is established.

[Theorem 2] Each optimum-time synchronization al-
gorithm developed by Balzer [1], Gerken [3], Mazoyer
[8] and Waksman [17] has an O(n2) state-change com-
plexity, respectively.

Figure 2 shows a comparison between state-
changes of the optimum-time synchronization algo-
rithms. Gerken [3] has shown that his 155-state al-
gorithm has Θ(n log n) state-change complexity.

3.2 Linear-time synchronization algo-
rithms

The firing squad synchronization problem was first
solved by J. McCarthy and M. Minsky [9] who pre-
sented a 3n-step algorithm. Fischer [2] gave a 15-
state implementation for the 3n-step synchronization
scheme. Both of the algorithms were based on the
divide-and-conquer scheme that were realized with
1/1- and 1/3-speed signals interacting each other.
These signals look like threads in the time-space dia-
gram and the 3n-step synchronization algorithm based
on the scheme is said to be thread-like algorithm.
Yunés [18] presented a seven-state implementation
based on the thread-like algorithm. In his construc-
tion, the width of the threads is larger than the pre-



vious design. We can get the state change complexity
for the 3n-step thread-like synchronization algorithms
with finite-width threads.

[Theorem 3] Any 3n-step finite-width thread-like
synchronization algorithm has an O(n log n) state-
change complexity.

[Theorem 4] Each linear-time 3n-step synchroniza-
tion algorithm developed by Fischer [2], Minsky and
MacCarthy [9], and Yunés [18] has an Ω(n log n) state-
change complexity, respectively.

Figure 3 shows a comparison between state-changes
of the 3n-step synchronization algorithms with finite-
width threads.
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Figure 3: State-changes in 3n-step synchronization al-
gorithms.

4 State-change complexity in two-
dimensional synchronization algo-
rithms

Figure 1 (below) shows a finite two-dimensional (2-
D) cellular array consisting of m × n cells. Each cell
is an identical (except the border cells) finite-state au-
tomaton. The array operates in lock-step mode in
such a way that the next state of each cell (except
border cells) is determined by both its own present
state and the present states of its north, south, east
and west neighbors. All cells (soldiers), except the
north-west corner cell (general), are initially in the
quiescent state at time t = 0 with the property that
the next state of a quiescent cell with quiescent neigh-
bors is the quiescent state again. At time t = 0,
the north-west corner cell C1,1 is in the fire-when-
ready state, which is the initiation signal for synchro-
nizing the array. The firing squad synchronization

problem is to determine a description (state set and
next-state function) for cells that ensures all cells en-
ter the fire state at exactly the same time and for the
first time. The set of states must be independent of
m and n. Maeda and Umeo [5] developed a simple
and efficient mapping scheme that enables us to em-
bed any one-dimensional firing squad synchronization
algorithm onto two-dimensional arrays without intro-
ducing additional states. We see that any configura-
tion on a 1-D CA consisting of m + n− 1 cells can be
mapped onto 2-D m × n arrays. Therefore, when the
embedded 1-D CA fires m+n−1 cells in T (m+n−1)
steps, the corresponding 2-D CA fires the m×n array
in T (m+n−1) steps. We can design state-efficient syn-
chronization algorithms based on the mapping. Those
algorithms are stated as follows:

[Theorem 5][5,14] There exists a 6-state firing squad
synchronization algorithm that can synchronize any
m × n rectangular array in 2(m + n) − 4 steps.

[Theorem 6][4,5,14] There exists a 13-state firing
squad synchronization algorithm that can synchronize
any m × n rectangular array in optimum m + n +
max(m,n) − 3 steps.

In Fig. 4 (left), we show snapshots of the 13-state
optimum-time generalized firing squad synchroniza-
tion algorithm. Shaded squares in Fig. 4 (right) mean
cells that change their states in the computation. Fig-
ure 5 shows a comparison of the state-change com-
plexity of the algorithm in the case where the initial
general is located on C1,Cn/4 and Cn/2. Figure 6 il-
lustrates the state-change complexities between those
two linear- and optimum-time algorithms for rectan-
gular arrays.
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0 Q Q Q Q Q Q Q R Q Q Q Q Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q Z G Z Q Q Q Q Q Q Q Q Q Q Q

2 Q Q Q Q Q Z Q1 G Q2 Z Q Q Q Q Q Q Q Q Q Q

3 Q Q Q Q Z Q1 Q1 G Q2 Q2 Z Q Q Q Q Q Q Q Q Q

4 Q Q Q Z Q1 Q1 Q1 G Q2 Q2 Q2 Z Q Q Q Q Q Q Q Q

5 Q Q Z Q1 Q1 Q1 Q1 G Q2 Q2 Q2 Q2 Z Q Q Q Q Q Q Q

6 Q Z Q1 Q1 Q1 Q1 Q1 G Q2 Q2 Q2 Q2 Q2 Z Q Q Q Q Q Q

7 W Q1 Q1 Q1 Q1 Q1 Q1 G Q2 Q2 Q2 Q2 Q2 Q2 Z Q Q Q Q Q

8 W ] Q1 Q1 Q1 Q1 Q1 G Q2 Q2 Q2 Q2 Q2 Q2 Q2 Z Q Q Q Q

9 W ] ] Q1 Q1 Q1 Q1 G Q2 Q2 Q2 Q2 Q2 Q2 Q2 Q2 Z Q Q Q

10 W ] A ] Q1 Q1 Q1 G Q2 Q2 Q2 Q2 Q2 Q2 Q2 Q2 Q2 Z Q Q

11 W ] H Q ] Q1 Q1 G Q2 Q2 Q2 Q2 Q2 Q2 Q2 Q2 Q2 Q2 Z Q

12 W ] R H A ] Q1 G Q2 Q2 Q2 Q2 Q2 Q2 Q2 Q2 Q2 Q2 Q2 W

13 W ] R H H Q ] G Q2 Q2 Q2 Q2 Q2 Q2 Q2 Q2 Q2 Q2 [ W

14 W ] R H Q H A N Q2 Q2 Q2 Q2 Q2 Q2 Q2 Q2 Q2 [ [ W

15 W ] R ] H H H ] H Q2 Q2 Q2 Q2 Q2 Q2 Q2 [ H [ W

16 W ] H ] H H H ] R Z Q2 Q2 Q2 Q2 Q2 [ Q A [ W

17 W ] H ] H H H Q R H Z Q2 Q2 Q2 [ H A R [ W

18 W ] H ] H H Q H R H N Z Q2 [ Q A A R [ W

19 W ] H ] H Q H H R ] H H [ H A Q A R [ W

20 W ] H ] R H H H H ] H [ Q A A A [ R [ W

21 W ] H Q R H H H H ] [ H A Q A A [ A [ W

22 W ] R H R H H H H W W A A A Q A [ A [ W

23 W ] R H R H H H [ W W ] A A A R [ A [ W

24 W ] R H R H H [ [ W W ] ] A A R Q A [ W

25 W ] R H R H [ H [ W W ] A ] A R A R [ W

26 W ] R H R [ Q A [ W W ] H Q ] R A R [ W

27 W ] R H W W A R [ W W ] R H W W A R [ W

28 W ] R [ W W ] R [ W W ] R [ W W ] R [ W

29 W ] W [ W W ] W [ W W ] W [ W W ] W [ W

30 W W W W W W W W W W W W W W W W W W W W

31 F F F F F F F F F F F F F F F F F F F F
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3 Q Q Q Q Z Q1 Q1 G Q2 Q2 Z Q Q Q Q Q Q Q Q Q
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17 W ] H ] H H H Q R H Z Q2 Q2 Q2 [ H A R [ W
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Figure 4: Snapshots of the generalized 13-states syn-
chronization algorithm.
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Figure 5: Comparison of state-changes in the general-
ized 13-states synchronization algorithm.
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Figure 6: State-changes in the two-dimensional syn-
chronization algorithms.

5 Conclusions

We have implemented most of the synchroniza-
tion algorithms developed so far and investigated their
state-change complexities on a computer. A compara-
tive study of the state-change complexity in optimum-
and linear-time synchronization algorithms on one-
and two-dimensional cellular arrays has been pre-
sented.
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