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Abstract 
 
Designing low level recogniser/filters for 
vision systems restricts their potential. We 
show how retinal neurons based on pixel-pair 
sensors can recognise shapes. The next step is 
evolving optimum retinal neurons to support 
the evolution of vision systems that can 
abstract their own higher level constructs. 
 
1. Introduction 
 
Our group is investigating a new vision 
architecture based on a multilayer 
representation [1].This architecture is intended 
to produce machine vision systems that: 
 
• evolve appropriate retinal configurations 
• evolve connectivities to represent spatial 

relationships 
• abstract their own higher level constructs 
• have levels which are integrated by new 

relational mathematics 
 
A key feature of the architecture is a multilevel 
representation, with pixels at the lowest level, 
and objects and scenes at higher levels. 
 
At the lowest layer, configurations of pixels 
respond to objects and are connected to an 
hypothetical neuron that fires when activated 
by appropriate inputs. We call these retinal 
configurations. The outputs of lower level 
neurons feeds forward through the system, 
ultimately allowing objects and scenes to be 
recognised. 
 
 
 
 
 
Figure 1. Inputs to a low-level neuron 
 
Elsewhere [1] we have experimented with 
retinal configurations based on fixed pixel 
positions, as illustrated in Figure 1. Here there 
is a central sensor, surrounded by six satellite 
sensors. The idea is that if the central sensor 
detects darkness, the neuron is triggered. There 
are sixty four light-dark responses for the six 
satellite pixels, ( Fig 2 We assume that there 

are sixty-four associated retina neurons. Once 
the central neuron is triggered, the neuron fires 
if the six satellite pixels match the black-white 
greyscales of the image. Thus, every dark pixel 
in an image responds to one of these sixty-four 
retinal neurons, according to the black-white 
states of its satellite pixels.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.   64 retinal neuron patterns 
 
Figure 3 shows the three shapes used in the 
experiments reported in this paper. Each shape 
responds differently to the retinal neurons. For 
example, the diamond shape has more type-57 
responses than the circle or square, because 
this configuration of the satellite sensors 
responds well to the sloping edges. For a given 
shape, the numbers of responses for each 
retinal neuron can be counted, giving a 64-
element response vector for each shape. 
 

 
 
 
Figure 3. The simple shapes used for our                  
experiments 
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It has been shown that these vectors contain 
sufficient information to discriminate the 
simple shapes, in the context of our 
hierarchical architecture, which is described in 
detail in [1]. 
 
2. Random Neural Pair Generation 
 
An essential feature of our architecture is that 
it must be able to adapt to changes in objects 
and scenes. We believe that this pre-empts 
approaches to machine vision in which  
programmers design a fixed retinal processing 
architecture. In particular we believe that the 
approach typified by our designing the sixty 
four retinal neurons in Figure 2 inevitably 
leads to vision systems that will be limited in 
their recognition ability, and incapable of 
adapting to radically new objects and scenes. 
 
We conclude from this that we need to 
generate the retinal neuron configurations at 
random. There are many questions associated 
with this, including: 
 

• compared to one plus six sensors used 
in Figure 1, how many sensors should 
be connected together to produce a 
retinal neuron? 

• what should be the maximum or 
minimum ‘diameter’ of the neuron? 

• how many neurons are required for 
successful pattern recognition? 

 
To begin our experiments we used pairs of 
pixel sensors connected to hypothetical 
neurons, as shown in Figure 4. They can occur 
at any distance from one another within the 
image, as shown in Figure 4. 
 
 

 
 
Figure 4. The four pixel-pair configurations 
    0 - background-background 
    1 - background-foreground 
    2 - foreground-background 
    3 - foreground-foreground 

There are four possibilities for the pixel pair:  
background-background (0) background-
foreground (1), 2 - foreground-background (2), 
and foreground-foreground (3). 
 
For our experiments, we generated sixty pixel 
pair configurations. These random 
configuration were fixed and used for training 
and recognition. The retinal neurons are 
illustrated in Figure 5. 
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Figure 5. Pixel pair retinal neurons 
 
Three ‘template’ shapes were generated using 
one shape of each class shown in Figure 3 as 
the training set. If the sensor black-white 
inputs correspond to the fixed black-white 
input configuration of the neuron, then that 
neuron fires. For example, if the neuron is of 
Type 0 and both input pixels are white, the 
neuron fires. 
 
3. Recognising unseen shapes 
 
For a given set of pixel pairs and a given 
shape, the neuron response is recorded as a 
template. These templates are matched against 
unseen shapes and used to recognise them. 
Thus each unseen shape gets a score of the 
number of neurons that were matched and 
fired. We apply a winner-takes all strategy, and 
the shape with the highest number of matches 
is recognised. If two or more shapes have the 
same score, a non-classification is made. 
 

Circle Diamond Square 
88/88 87/88 88/88 

 
Table 1. Recognition of the three shapes 
 
For this experiment we used eighty eight 
examples of each test shape. All the circles, all 
the squares, and all but one of the diamonds 
were correctly recognised ( Table 1). This 
result strongly suggests that this approach of 
matching shapes against randomly generated 
retinal neurons is viable. 
 
 



Trial Circle Diamond Square % 
1 88/88   87/88 *   88/88 99% 
2 88/88   88/88   88/88 100% 
3 88/88   80/88 *   84/88 * 94% 
4 88/88   85/88 *   88/88 98% 
5 88/88   88/88   88/88 100% 
6 88/88   88/88   88/88 100% 
7 88/88   88/88   88/88 100% 
8 88/88   88/88   88/88 100% 
9 87/88 *   88/88   88/88 99% 

10 88/88   88/88   88/88 100% 
 
Table 2. Ten recognition trials (60 neurons) 
 
To strengthen this conclusion the experiment 
was repeated ten times. The results of these 
experiments are shown in Table 2. 
 
These results support the conclusion that the 
randomly generated retinal neurons can be 
used for shape recognition, though they show 
that errors can occur. 
 
In order to see if these results could be 
improved, the experiment was repeated using 
sets of one hundred randomly generated neural 
pairs. The results in Table 3 suggest that 
adding extra neurons can improve the pattern 
recognition performance. 
 
Trial Circle Diamond Square % 

1 88/88   88/88 +   88/88 100% 
2 88/88   88/88   88/88 100% 
3 88/88   84/88 +   88/88 + 100% 
4 88/88   87/88 +   88/88 99% 
5 88/88   88/88   88/88 100% 
6 88/88   88/88   88/88 100% 
7 88/88   88/88   88/88 100% 
8 88/88   88/88   88/88 100% 
9 88/88 +   88/88   88/88 100% 

10 88/88   88/88   88/88 100% 
 
Table 3. Ten further trials with 100 neurons 
 
Not surprisingly, the location as well as the 
type of configuration of the random pairs 
affects performance, as does the number of 
pairs selected. 
 
4. Discrimination by configuration 
 
The next set of experiments is concerned with 
the relative ‘usefulness’ of the different 
configurations.  
 
Table 4 indicates that, as one would expect, 
considering the relatively large shapes we are 
using, that the largest proportion of the 60 
pairs are of type ‘3’, black-black, for each of 
the three template shapes. 
 

 Trial Circle Diamond Square 
1 44 24 56 
2 41 19 54 
3 40 19 53 
4 37 17 53 
5 40 19 56 
6 34 12 55 
7 36 20 55 
8 34 14 53 
9 38 16 55 

10 42 21 54 
 
Table 4. Frequency of Configuration 3 
 
Using just configuration 4 for matching gave 
an improvement in all the scores over the first 
set of experiments (Table 2), and no worsening 
of any score. The performance for diamonds is 
notably better.  
 
So these black-black pairs are being generated 
in sufficient quantity to give reasonably good 
recognition. 
 
Increasing the number of random pixel-pairs to 
100 further improves performance  
 
The next set of experiments restricted the 
permitted configurations to types ‘1’ and ‘2’, 
white-black and black-white. 
 
This gives some slight improvements with 
recognition of diamonds in Trial sets 1and 3, 
but some deterioration in recognition with trial 
sets 3, 4, 5, 7, 9 and 10.   
 
Another factor which is possibly affecting 
performance is that the ‘not 1 and 2’ 
configurations, ‘0’ and ‘3’, are opposites – 
background/background versus 
foreground/foreground, so that grouping them 
together into one type may reduce 
discriminatory ability. In other words, it seems 
that information about ‘edges’ and ‘not edges’ 
without further categorization of the ‘not 
edges’ as ‘shape’ or ‘background’ is 
insufficient for reliable recognition. 
 
Again selecting 100 random pairs increases the 
quantity of type ‘1’ and ‘2’ configurations and 
performance improves correspondingly.  
 
Increasing to 130 pairs brings further 
improvement – 100% recognition for all but 
the diamonds, with one trial giving a marked 
deterioration .  So, in general, even when the 
number of pairs is increased producing more 
type ‘1’ and ‘2’ pairs, recognition is not as 
reliable as for all four configurations or types 
‘3’ and ‘not 3’.   
 



5. Distance between paired pixels 
 
So far there has been no restriction on the 
separation of the pixel pairs. In this section we 
investigate whether restricting the distance 
affects the results. 
 
It appears that restricting the permitted 
distance between the pixels in each pair 
adversely affects performance for a given 
number of random pairs.  
 
The recognition experiments were repeated 
with the distance, in both horizontal and 
vertical directions being reduced to <=10 to 
<=5 and finally to <=3. For 60 pixel-pairs  
recognition deteriorates correspondingly.   
 
Increasing to 150 pairs and setting the distance 
to <=10 pixels gives 100% recognition for all 
except the diamonds in one of ten trial sets. 
However, with 150 pairs and any distance, all 
shapes are correctly classified across all ten 
random sets, so restricting the distance appears 
to give no advantage. 
 
One might expect that restricting the distance 
would provide useful ‘local’ discriminatory 
information. Possibly the reason this does not 
appear to do so is the relatively small number 
of pixel-pairs, and the lack of redundancy. 
When more random pairs are generated, there 
is a better chance of gathering enough useful 
information to compensate for this. 
 
6. Informal Discussion 
 
These experiments have addressed a number of 
questions. They have been concerned with 
how randomness might used as the basis of 
recognition and what gives useful information 
in order to develop strategies that able it to 
repeat successful behaviours. 
 
In order to succeed at this, the system needs to 
be able to quantify the amount of information 
is getting from parameters such as distance 
between pixels, their location, the 
configurations they form in combination, and 
so on. It may even be useful to base its 
evaluations on information theory related to 
the inputs and outputs on the various 
connections in some form of hierarchical 
neural network.   
 
However this raises issues such as how to put a 
value on the relative quantities of information 
being conveyed. For example, how would the 
system differentiate between the amount of 
information obtained from a pair of pixels of 

type ‘3’ configuration 10 pixels apart and a 
type ‘2’ configuration pair 60 pixels apart? 
The answer to this probably lies in having 
feedback of some sort about the varying 
strengths of neuronal responses to the different 
input patterns as the system learns. Rolls and 
Deco [2] have recognized the contribution 
information theory can make to understanding 
communications among individual neurons 
and networks of neurons within the brain.        
 
7. Conclusions and the next step 
 
The conclusions from the experiments reported 
here are that: 
 

• randomly generated retinal neurons 
using pairs of pixel sensors can be 
used to recognise shapes 

• increasing the number of neurons 
from 60 to 150 improved performance 

• of the four types of neuron, Type-3 
appears to give the most information, 
but this rather inconclusive 

• restricting distances between sensor 
pairs did not appear to improve 
recognition performance, although the 
performance improved with the 
number of neurons. 

 
These conclusions have to be set in the context 
of the small number of test shapes we have 
used, and their simple nature. 
 
The results support our belief that we will be 
able to use randomly generated neurons for 
recognising shapes and features. In future 
experiments we intend to use evolutionary 
methods to select the most appropriate neurons 
for particular purposes. It is our intention to 
‘breed’ new sets of retinal neurons from those 
that perform best for a given application. 
 
The result that restricting distance does not 
appear to improve performance is particularly 
interesting. Combined with the result that 
increasing the number of neurons improves 
performance, this suggest that evolutionary 
principles can best select the most appropriate 
distances for any particular application, 
provided enough neurons are used. 
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