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Abstract
     A neural network usually learns so as to minimize a
scalar value such as a cost function.  This scalar value is
useful for a confirmation of neural network learning
performance.  However, this confirmation may not be
correct for neural network controllers because a plant
dynamics affects the cost function.  This paper proposes a
new tracking method of neural network weight change.
The proposed tracking method can provide a new
confirmation of the neural network learning performance.

1. Introduction

         Many studies have been undertaken in order to
apply both the flexibility and the learning capability of
neural networks to control systems[1][2]. A neural network
controller is usually designed so as to minimize the error
between a plant output (or neural network output) and a
desired output (teaching signal).  For this aim, neural
network learning rules are designed to change neural
network weights whose number reaches into thousands or
tens of thousands in some applications.  The reason to use
these huge number of weights is that a biological neural
network has huge number of neurons and it is proved that
more neurons realize more accurate nonlinear mapping
capability of the neural network.  As mentioned above, the
essence of neural network learning is nothing but the change
of the neural network weights.  However, in order to
examine the performance of the neural network learning,
most researchers use a cost function (squared error between
the desired output and the neural network output (or the
plant output)).  This is because it is not practical to
examine the huge number of the neural network weights and
the cost function is a scalar value which is easily dealt with.
However, the neural network weight change may not be
reflected in the cost function.  This problem is especially
serious in neural network controller applications.  This is

because the performance of the cost function is affected by
dynamics of the plant.  This fact leads that more accurate
examination of the neural network controller learning
performance requires to track the neural network weight
change directly.
       This paper proposes a new tracking method of the
neural network weight change. A leaning type neural
network direct controller[3] for a second order discrete time
plant is selected in order to examine the proposed tracking
method and its simulation results show the usefulness of the
proposed method.  

2. Tracking method of neural network
   we ight  change

        This section proposes the tracking method of the
neural network weight change and its application to the
learning type neural network direct controller.  For our
tracking method, first, one weight vector is derived from the
neural network weights.  Next, we calculate an inner
product of this weight vector and a standard vector.  Any
vector, which has same order as that of the weight vector,
can be selected as this standard vector, for example, the
weight vectors derived from the initial neural network
weights, the final neural network weights and so on.  We
can also calculate an angle between the weight vector and
the standard vector.  The track of the neural network weight
change can be drawn on a 2D plane through the use of these
calculated inner product and angle.  This track does not
show whole neural network weight change, but it is not
affect by the plant dynamics and it can show an another
characteristic of the neural network learning performance.
We can realize the new examination of the neural network
learning through the use of the proposed tracking method or
its combination with the cost function.
       In order to verify the usefulness of the tracking
method, we applied it to the learning type direct controller.



A reason of this selection is that the direct controller is
simplest.  The another reason is that the cost function of
the learning type is the sum of the squared error at each
sampling time and the plant dynamics less affect it in
comparison with an adaptive type.  This fact is useful to
examine the proposed tracking method effectiveness.  We
also select a discrete time SISO (single input and single
output) plant as an object plant because it is simplest and
useful for a practical controller application.  When we use
above selections, an output layer of the neural network has
one neuron, the weights between the output layer and a
hidden layer can be expressed as a vector ω  and the weights
between the hidden layer and an input layer can be expressed
as a matrix W.  To simplify, the neuron number of the
input layer is equal to that of the hidden layer.  That is, the
weight matrix W is the square matrix.  
      We can derive a new weight vector Γ from these
neural network weight vector and matrix as follows:

ΓT = [ω 1 ω n W11 W1nW21 W2n Wn1 Wnn ]    ( 1 )

where n is the neuron number both the input layer and the
hidden layer.  When we define the standard vector Γ0 , the
track of the neural network weight change on the 2D plane
can be expressed  as  the following equations.

X = Γ  cos θ, Y = Γ  sin θ                      ( 2 )

θ = cos-1 (
<Γ0⋅ Γ >

Γ0 ⋅ Γ
)
                          ( 3 )

Where <Γ0⋅ Γ > is the inner product between the vector Γ0

and the vector Γ, and Γ  is the norm of the vector Γ.   As
mentioned above, we can draw a new weight performance on
the 2D plane by use of X and Y in equations (2) and (3).
The plant dynamics does not affect this weight performance
directly.
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Fig.1 Block diagram of learning type neural network
       direct controller for second order discrete time plant.

3.  Simulation

     To verify the usefulness of the proposed tracking
method, it is applied to the learning type neural network
direct controller for the second order discrete time plant.
The simulated plant is follows:  

Y(k) = - a1Y(k-1) - a2Y(k-2) 

       +U(k-1) +bU(k-2) -a3Y(k-3)+ CnonY2(k-1)    (4 )

Where Y(k) is the plant output, U(k) is the plant input, k is
the sampling number, a1, a2 & b are the plant parameters, a3

is the parasite term and Cnon is the nonlinear term. For this
simulation, a1=-1.3, a2=0.3, b=0.7, a3=-0.03 and Cnon=0.2
are selected. The rectangular wave is also selected as the
desired value Yd.   The output error ε and the cost function
J(p) of the trial number p are defined as follows:

ε(k)=Yd(k)-Y(k)                                ( 5 )

J(p)= ε2(k)∑
k=1

ρ

                                  ( 6 )

where ρ is the sampling number within one trial period.
In this simulation, ρ=300 is selected.
      For this simulated plant, the neuron number n in
both the input and hidden layers is 4.  The neural network
input vector I is defined as the following equation.

IT(k) = [Yd(k+1) Y(k) Y(k-1) U(k-1)]               ( 7 )

We select the following sigmoid function f(x) as the input
output relation of the hidden layer.

f(x)=
Xg{1-exp(-4x/Xg)}

2{1+exp(-4x/Xg)}                           ( 8 )

Where Xg is the parameter which defines the sigmoid
function shape.  The plant input U(k) equals the neural
network output composed as follows:

U(k) = ω T(p)f{W(p)I(k)}                         ( 9 )

The block diagram of the learning type neural network direct
controller is shown in fig.1.  The learning rule of this
neural network controller is shown in the following
equations.  

Wij(p+1) = Wij(p)+η [ε(k)ω i(p)Ij(k-1)f,{ Wij(p)Ij(k-1)}]∑
j=1

n

∑
k=1

ρ

                                            ( 1 0 )
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Fig.2 Plant output (p=1).
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Fig.3 Plant output (p=200).
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Fig.4 Cost function.
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Fig.5 Track of neural network weight change
           ( p = 1 ~ 2 0 0 ) .
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Fig.6 Track of neural network weight change
          (p=191~200) .

ω i(p+1) = ω i(p)+ηf [ {Wij(p) (ε(k)Ij(k-1))∑
k=1

ρ

}∑
j=1

n

]
     ( 1 1 )

Where η is the parameter to determine the neural network
convergence speed.  We select the weight vector derived
from the final neural network weights as the standard vector
Γ0 of the equations (2) and (3)
     Figure 2 shows an example of the plant output (p=1)
using an initial neural network weight.  The solid line and
the dotted line show the plant output and the desired value
respectively.  Figure 3 shows the final plant output
(p=200).  As shown in these figures, the neural network
learning well performs and the plant output converges to the
desired value.  Figure 4 shows the cost function with
regard to the trial number.  As shown here, it appears that
the neural network weights do not change after several tens
of trials and the neural network learning is completely
finished.  Figure 5 shows the track of the neural network
weight change (p=1~200) through the use of the proposed
tracking method.  As shown in this figure, the neural
network weights change relatively large from the first trail



p=1 to six trials p=6.  After p=6, they change continuously
and this change is not finished at p=200.  To verify this,
figure 6 shows the expansion of fig.5 which is the track of
the neural network weight change (p=191~200).  As
shown here, we confirm that the neural network weights
continuously change at p=200.  That is, the neural network
learning is not finished yet at p=200.  This fact can not be
observed by use of the cost function shown in fig.4 and the
proposed tracking method is useful for the neural network
performance examination.  Figure 7 shows an another
example of the cost function.  In this example, it also
appears that the neural network learning is finished within
tree trials.  Figure 8 and 9  shows the track of the neural
network weight change (p=1~200) and its expansion
(p=191~200) respectively.  The neural network weights
change continuously and the neural network learning is not
finished yet.
     As mentioned above, the proposed tracking method is
useful to track the neural network weight change on 2D
plane.  This track shows another feature of the neural
network learning performance.    

4.  Conclusion

     This paper proposed the new tracking method of the
neural network weight change.  It was applied to the
learning type neural network direct controller and simulated.
The simulation results showed the usefulness of the
proposed tracking method and it could be observed that the
neural network weights were continuously changed in some
cases although the neural network learning appeared to be
finished.  The combination of the cost function and the
proposed tracking method is useful to examine the neural
network learning performance more accurately.
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Fig.7 Cost function.

0

0.02

0.04

0.06

0.08

0.1

2.415 2.42 2.425 2.43

Y

X

Fig.8 Track of neural network weight change
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