

Grasping the Distributed Entirety

Peter Sapaty 1 Masanori Sugisaka 2 Nikolay Mirenkov 1 Minetada Osano 1 Robert Finkelstein 3

1 University of Aizu
Aizu-Wakamatsu, Fukushima-ken 965-8580 Japan

+81-242-37-2604, +81-242-37-2553 (fax)
{sapaty, nikmir, osano}@u-aizu.ac.jp

2 Oita University

700 Oaza Dannoharu, 870-1192 Japan
+81-97-554-7831, +81-97-554-7841 (fax)

msugi@cc.oita-u.ac.jp

3 Robotic Technology Inc.
11424 Palatine Drive, Potomac, Maryland 20854

+1-301-983-4194, +1-301-983-3921 (fax)
RobertFinkelstein@compuserve.com

Abstract. A flexible WAVE-WP ideology and
technology, aimed at creation of new and penetration into
other distributed systems of different natures and at different
levels, are described. Supported by a high-level spatial
programming language, the technology allows us to grasp
large distributed systems as a whole, study and manage their
behavior, and direct evolution. Programming examples
combining swarm behavior of an unmanned group with a
hierarchical command and control are presented, providing
integrity, flexibility, and openness within the same solution.
Other application areas of the paradigm are discussed too.

Keywords: parallel distributed processing, spatial

navigation, WAVE-WP language, cooperative robotics,
swarm behavior, distributed command and control, open
systems, over-operability.

1 Introduction

To understand the mental state of a handicapped person,
of what the life and soul really mean, problems of economy
and ecology, or how to win market or battlefield, we must
consider the system as a whole – not just as a collection of
parts. The situation complicates dramatically if the systems
are dynamic and open, spread over territories, comprise
unsafe or changing components, and cannot be observed in
their entirety from a single point.

Usually the whole can be comprehended and decisions
made only by a single human brain -- that is why we still
have queens, kings, presidents, prime-ministers and
commanders-in-chief. However, due to physical limitations,
the brain cannot perceive the entire system in detail, and
uses simplifications. Hierarchical systems are common too,
where decisions on different levels are made by single
brains on restricted information, with averaging and
abstracting on higher levels. This is usually inherited by
automatic systems using computers and computer networks
mimicking human hierarchies. The hierarchical systems
with predetermined partitioning onto levels often become
static and clumsy, and may not operate efficiently in

changeable environments.
In this paper, as an alternative to existing manned or

unmanned control systems, we are describing flexible
WAVE-WP (or World Processing) ideology and
technology aimed at creating new or penetrating other
systems and their organizations. Supported by a high-
level spatial programming language, WAVE-WP allows
us to grasp large systems as a whole, study their behavior
and direct evolution in the way required. On the
implementation layer, the technology widely uses self-
spreading mobile cooperative program code dynamically
covering and matching distributed systems. This often
allows us to get solutions orders of magnitude more
compact than by other approaches. The internal system
organization, including partitioning into components and
specific command and control, can be a function of the
environment and the mission scenario in WAVE-WP; it
may change at runtime while preserving the overall
system operability and goal orientation.

Practical applications (with code examples) will be
presented in relation to collective behavior of a robotic
group, which integrates a swarm-based movement with
hierarchical command and control.

The proposed approach allows us to grasp and
manage the integrity and wholeness of large dynamic
systems in highly parallel and fully distributed mode,
often contrary to the human experience, also to the
systems modeling human behavior, with a real potential
to outperform them.

2 The WAVE-WP Spatial Automaton

The WAVE-WP automaton [1,2,3] effectively
inherits the integrity of traditional sequential
programming over localized memory, but for working
now with the real distributed world, while allowing its
parallel navigation in an active pattern flow and
matching mode, as a single spatial process. The
automaton may start from any point of the distributed
world to be controlled, dynamically covering its parts or

mailto:osano}@u-aizu.ac.jp
mailto:RobertFinkelstein@compuserve.com

the whole, and mounting of a variety of parallel and
distributed knowledge and control infrastructures.
Implanting distributed “soul” into the system organization,
the automaton increases system's integrity, capability of
pursuing local and global goals, assessing distributed
situations, making autonomous decisions, and recovering
from indiscriminate damages. Many spatially cooperating or
competing parallel WAVE-WP automata may evolve on the
same system body serving, say, as deliberative, reactive,
and/or reflective spatial processes.

One of the distinguishing features of WAVE-WP is the
representation of distributed worlds it operates in. Physical
world (or PW) is continuous and infinite in WAVE-WP.
Existing at any its point, and possibly performing a job, is
considered as residing in a node having physical coordinates.
Such a node, reflecting only occupancy at the point,
vanishes with the termination of all occupancies in it.
Virtual world (or VW) is discrete and interlinked in WAVE-
WP, being represented similar to WAVE [4] by a distributed
Knowledge Network (KN). Its persistent nodes may contain
established concepts or facts, and (also persistent) links
(oriented and non-oriented, connecting the nodes) may
reflect different relations between the nodes.

The same model can also operate with the united (or
PVW) world, in which any element may have features of the
both worlds. A variety of effective access mechanisms to
nodes, links and their groups, say, by physical coordinates,
electronic addresses, by names, via traversing links, etc.
(classified as tunnel and surface navigation) abound in the
model, using both selective and broadcasting access modes.

Solutions of any problems in this formalized world in
WAVE-WP are represented as its coordinated parallel
navigation (or exploration, invasion, grasping, coverage,
flooding, conquest, etc.) by some higher-level forces, or
waves [2,4] These bring local operations, control and
transitional data directly into the needed points of the world.
The obtained results, together with the same or other
operations may invade the other world parts, and so on.

During the world navigation, which may be loose and
free or strictly (both hierarchically and horizontally)
controlled, waves can modify the very world they evolve in
and move through, as well as create it from scratch
(including any distributed structures and topologies). Waves
may also settle persistent cooperative processes in world’s
different points, subsequently influencing its further
development and evolution in the way required.

3 WAVE-WP Language

The system language expressing full details of this new

control automaton has been developed. Having recursive
space-navigating and space-penetrating nature, it can
operate with both information and physical matter. The
language can also be used as a traditional one, so no
integration with (and/or interfaces to) other programming
models and systems may be needed for solving complex
distributed knowledge processing and control problems.

Very compact syntax of the language, as shown in Fig.1,
see also [1,2], makes it particularly suitable for direct
interpretation in distributed environments, being supported
by effective program code mobility in computer networks.

wave { advance ; }
advance { move , }
move constant | variable | { move act } |

 [rule] (wave)
constant information | physical-matter
variable nodal | frontal | environmental
act flow-act | fusion-act
rule forward-rule | echo-rule

Fig.1. Syntax of WAVE-WP language.

In this description, braces set up zero or more

repetitions of a construct with a delimiter at its right;
square brackets identify an optional construct; semicolon
allows for sequential, while comma for parallel
invocation of program parts; and parentheses are used for
structuring of WAVE-WP programs (or waves).
Successive program parts, or advances, develop from all
nodes of the set of nodes reached (SNR) by the previous
advance, whereas parallel or independent parts, moves,
constituting the advances, develop from the same nodes,
while splitting processes and adding their own SNRs to
the resultant SNR of the advance.

Elementary acts represent data processing, hops in
both physical and virtual spaces, and local control. Rules
establish non-local constraints and contexts over space-
evolving waves like, for example, the ability to create
networks, also allowing WAVE-WP to be used as a
conventional language. Variables, called spatial (as
being dynamically scattered in space), can be of the three
types: nodal, associated with virtual or physical nodes
and shared by different waves; frontal, propagating with
waves as their sole property; and environmental,
accessing elements of internal and external environments
navigated by waves.

This recursive navigational structure of the language
allows us to express highly parallel and fully
decentralized, albeit strongly controlled and coordinated,
operations in distributed worlds in a most compact way –
in the form of integral space processing and
transformation formulae. These resemble data processing
expressions of traditional programming languages, but
can now operate in and process the whole distributed
world.

4 Implementation Basics

On the implementation layer, the automaton widely
uses high-level mobile cooperative program code self-
spreading and replicating in networks, and can be easily
implemented on any existing software or hardware
platform. As the automaton can describe direct
movement and processing in physical world, its
implementation may need to involve multiple mobile
hardware, with or without human participation. A
network of (hardware or software) communicating
WAVE-WP language interpreters (or WIs), which can be
mobile if installed in manned or unmanned vehicles,
should be embedded into the distributed world to be
controlled, in most sensitive points, see Fig. 2.

WI

Spatial scenario 1

Spatial scenario 2

Distributed
physical &
virtual World

WI

WI

WI

WI
WI

WI

WI

Creating distributed
infrastructures

WAVE-WP
interpreters

Sensitive
points

Fig.2. A network of WAVE-WP interpreters.

During the spatial execution of system scenarios in

WAVE-WP, individual interpreters can make local
information and physical matter processing, as well as
physical movement in space. They can also partition,
modify and replicate program code, sending it to other
interpreters (along with local transitional data), dynamically
forming track-based distributed interpretation
infrastructures.

The automaton can exploit other systems as
computational and control resources too, with or without
preliminary consent, i.e. in a (remotely controlled) virus-like
mode. For example, many existing network attacks
(especially DDoS) may be considered as a possible
malicious, simplified and degenerated implementation of the
automaton. WAVE-WP can also effectively integrate with
other advanced systems managing distributed resources, like,
for example, J-UCAS [5], within their orientation on rescue
and crisis relief missions.

5 Programming Example: Integration of Swarm
Behavior with Distributed Command and Control

Effective integration of swarm behavior [6] with strict
command and control for robotic teams may help fulfill
complex objectives and survive in dynamic environments.

Different forms of group behavior can coexist within
WAVE-WP model of parallel and distributed processing
and control. Written in a higher-level spatial language, with
considerable code reduction, the combined system scenarios
can start from any component, covering at runtime the
whole system that may be dynamic and open.

A distributed organization has been programmed which,
for example, makes all units of a scout platoon move in a
swarm, but at the same time regularly redefining the
topologically central unit and creating a fresh, most efficient,
neighborhood-based hierarchical infrastructure covering all
units. It fuses targets seen by the units, distributing them
back to all units for an individual selection and impact.

We will consider here only some very simplified
examples of the WAVE-WP code expressing different
distributed operations of the platoon, along with their unity.

5.1 Swarm Movement

The initial, casual, distribution of mobile units in space
may be as shown in Fig. 3. The simple program below
activates all units in the group (say, unmanned scout

platoon), making them move in a swarm.

y

x

Fig. 3. Distributed group of mobile units: initial order.

Each unit randomly chooses next step within a given
global direction, if the planned new position is not too
close to other units, otherwise the next step is being
redefined unless a suitable move is found. The program
(let us call it swarm-move) may start from any node,
making all units fully autonomous and independent, and
communicating only locally with other units:

 Flimits = (dx0_dy-2, dx8_dy5);
 Frange = r5; direct # all;
 repeat(
 [Fshift = Flimits ? random;
 (direct # Fshift;
 direct ## Frange)== nil;
 WHERE += Fshift
];
)

A possible snapshot of the group during the work of
this distributed program is shown in Fig. 4.

Threshold
distance to
other units

Global
direction of
movement

Fig. 4. Moving in a swarm with a threshold distance

between units.

5.2 Finding Topologically Central Unit

Let us consider now the finding of a topologically
central unit of the group for a certain moment of time (as
the units may be constantly moving and changing
positions to each other). Starting from any unit, this can
be done by the following program (calling it find-
center):

 Faver = average(direct # all; WHERE);
 Ncenter =
 min(

 direct # all;
 (Faver, WHERE) ? distance _ ADDRESS

) : 2

5.3 Creating a Hierarchical Infrastructure

Let us create a hierarchical infrastructure starting from
the central unit found and covering all other units. It can be
most efficient if based on a physical neighborhood principle,
with the next layer nodes lying from a current node, say,
within a certain physical range. This can be accomplished
by the following program (calling it infra-build):

 Frange = r20;
 repeat(
 direct ## Frange;
 grasp(
 (all #) == nil; [create(-infra # BACK)]
)
)

An example of such an infrastructure built over a swarm
of Fig. 4 is shown in Fig. 5.

infra
infra

infra

Central unit

Next level
range

infra

Fig. 5. Creating a neighborhood-based infrastructure from
the most central unit.

Such an infrastructure can be effectively used for

different purposes within the distributed command and
control, with a possible one discussed below.

5.4 Hierarchical Fusion and Distribution of Targets

Starting from the same root node, the created
hierarchical infrastructure can be repeatedly used for
collecting targets discovered by the sensors of all units
(ascending the hierarchy in parallel), with subsequent
distribution of the collected list of targets back to all the
units (descending the hierarchy, in parallel too, with the
target list replicated in nodes). The units may be allowed to
choose suitable targets individually, impacting them by the
available means. All this can be achieved by the following
spatially-recursive program (named collect-distribute):

 F1={(+infra#; ^F1), ?detect};
 F2={(+infra#; ^F2), Fseen?selectImpact};
 repeat([Fseen=(^F1); Fseen!=nil; ^F2])

The work of this program is explained in Fig. 6.

5.5 The Combined Scenario

All these programs can be effectively combined within a
single scenario, with the center constantly migrating when

units move in the swarm, and a new hierarchical
infrastructure being rebuilt each time and frequently used
for parallel and distributed vision and impacting targets.

Collecting
targets from
all units

Distributing
all collected
targets to all
units

Central unit

infra infrainfra

infra

Fig. 6. Hierarchical fusion and distribution of targets.

To achieve this, we will also need removing of the

previous infrastructure each time before creating of a
new one from, possibly, a new central unit, which can be
easily done by the following program (symbolically
called infra-remove):

 direct # all; all #; LINK = nil

The united program, combining all the previous
programs within a single distributed scenario, which can
originally be injected from any mobile unit, will be as
follows.

 swarm-move,
 repeat(
 find-center; direct # Ncenter;
 [infra-remove]; [infra-build];
 orparallel(
 collect-distribute,
 TIME += 300
)
)

The named constituent programs, discussed before,
can participate in it directly by their full texts, or by calls
to them if represented as procedures. The program allows
the regularly updated infrastructure to be used for fusing-
distributing targets for some period of time (here 300
sec.), after which it finds the topologically central unit
and new infrastructure from it again, after removing the
previous infrastructure, and so on. All units continue
moving in a swarm (with the details given before)
independently of the infrastructure updating, targets
collecting, distributing, and impacting processes.

As can be seen from the programming examples
above, WAVE-WP is a completely different language
from conventional terms, allowing us to express complex
operations and control directly in distributed dynamic
spaces, with programs often orders of magnitude more
compact than in other known languages.

6 Other WAVE-WP Applications

The technology has numerous practical applications
in other areas too, summarized in [1-4]. Some exemplary
projects are as follows.

• Distributed knowledge representation and processing.

Dynamically creating arbitrary knowledge networks in
distributed spaces, which can be modified at runtime,
WAVE-WP can implement any knowledge processing and
control systems in parallel and fully distributed way. A
program package had been developed for basic problems of
the graph and network theory, where each graph node could
reside on a separate computer.

• Operating in physical world under the guidance of
virtual world. Operating in the unity of physical and virtual
worlds, the WAVE-WP model can effectively investigate
physical worlds and create their reflection in the form of
distributed virtual worlds. The latter can guide further
movement and search in the distributed PW, and so on.

• Intelligent network management. Integrating traditional
network management tools and systems, and dynamically
extracting higher-level knowledge from raw data via them,
WAVE-WP establishes a higher, intelligent layer allowing
us to analyze varying network topologies, regulate network
load and redirect traffic in case of line failures or
congestions. It also can be used for essentially new,
universal and intelligent network protocols.

• Advanced crisis reaction forces. Smaller, dynamic
armies, with dramatically increased mobility and lethality,
represent nowadays the main direction in the development
of advanced crisis reaction forces, which may effectively
use multiple unmanned units. The WAVE-WP technology
can quickly assemble a highly operational battle force from
dissimilar (possibly casual) units, setting intelligent
command and control infrastructures over them.

• Distributed road and air traffic management.
Distributed computer networks working in WAVE-WP,
covering the space to be controlled, can be efficiently used
for both road and air traffic management. The model
provides simultaneous tracking of multiple objects in PW by
mobile intelligence spreading in VW, via computer
networks.

• Autonomous distributed cognitive systems. While
cognitive systems include reactive and deliberative
processes, they also incorporate mechanisms for self-
reflection and adaptive self-modification. The WAVE-WP
paradigm allows for the description of interacting
deliberative, reactive, and reflective processes on a semantic
level, representing the whole mission rather than individual
robots. This provides new, important degrees of freedom for
autonomous robotic teams.

• Distributed interactive simulation. The technology
allows for highly efficient, scalable distributed simulation of
complex dynamic systems, like battlefields, in open
computer networks. Due to full distribution of the simulated
space and entities operating in it, there is no need to
broadcast changes in terrain or positions of entities to other
computers, as usual. Each entity operates in its own part of
the simulated world, communicating locally with other
entities. Entities can move freely through the simulated
space (and between computers) if needed.

• Intelligent global defense and security infrastructures.
WAVE-WP can also be used in a much broader scale,
especially for the creation of intelligent international
infrastructures widely using automated and fully automatic
control and advanced robotics. The global system may
effectively solve problems of distributed air defense, where
multiple hostile objects penetrating the air space can be

simultaneously discovered, chased, analyzed, and
destroyed using computerized radar networks as a
collective brain.

7 Conclusions

The WAVE-WP technology allows for a more
rational and universal integration, management and
simulation of large complex systems. This is being
achieved by establishing a higher level of their vision
and coordination, symbolically called “over-operability”
[2] versus (and in supplement) to the traditional
“interoperability”.

Distributed system creation and coordination
scenarios in WAVE-WP are often orders of magnitude
simpler and more compact than usual, due to high level
and spatial nature of the model and language.

This helps us to effectively grasp and manage large,
dynamic and open systems and solutions in them as a
whole, often avoiding tedious partitioning into pieces
(agents) and setting their communication and
synchronization.

These and other routines are effectively shifted to the
automatic implementation by dynamic networks of
WAVE-WP interpreters. Traditional software or
hardware agents may have sense within this approach
only when required, during the spatial development of
parallel system scenarios.

A detailed description of the WAVE-WP model and
its extended applications can soon be available from [7].

References

[1] P. Sapaty, N. Mirenkov, M. Sugisaka, and M. Osano,

“Distributed Artificial Life Using World Processing
Technology”, Proc. of the Fifth Int. Conference on
Human and Computer (HC-2004), September 1-3,
2004, The University of Aizu, Japan, 2004.

[2] P. S. Sapaty, “Over-Operability in Distributed
Simulation and Control”, The MSIAC's M&S
Journal Online, Winter 2002 Issue, Volume 4, No. 2,
Alexandria, VA,
http://www.msiac.dmso.mil/journal/WI03/sap42_1.html.

[3] P. Sapaty, M. Sugisaka, “WAVE-WP (World
Processing) Technology”, Proc. 1st International
Conference on Informatics in Control, Automation
and Robotics, 25-28 August 2004, Setubal, Portugal.

[4] P. S. Sapaty, “Mobile Processing in Distributed and
Open Environments”, John Wiley & Sons, ISBN:
0471195723, New York, February 1999, 436 p.

[5] “Joint Unmanned Combat Air Systems (J-UCAS)”,
www.darpa.mil.

[6] R. Finkelstein, “Swarm Intelligence: Application to
the 4/DRCS and the Scout Platoon Mission”, White
Paper, Robotic Technology Inc., USA, 2004.

[7] P. S. Sapaty, “Ruling Distributed Dynamic Worlds”,
John Wiley & Sons, ISBN: 0471655759, New York,
June 2005, 256p., www.wiley.com.

http://www.msiac.dmso.mil/journal/WI03/sap42_1.html
http://www.darpa.mil/
http://www.wiley.com/

