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Abstract Derivation of equations of motion is the central 
part of analytical dynamics, which is important in the 
design of machines and prosthetic devices and in the 
motion control of spacecraft, robotic devices, and human 
bodies.  This paper summarizes some recent 
developments of a new method for deriving equations of 
motion that was originally invented by Kalaba and 
Udwadia.  Through simple examples, we demonstrate the 
simplicity of this method, its easy numerical 
implementation in modern computing environment, and 
its advantage of handling modification of constraints.   
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Introduction  
Multibody dynamic mechanical systems occur 

in many classical and modern fields in science and 
engineering, such as in the design of vehicles, machines, 
and prosthetic devices, in the motion control of 
spacecrafts, robots and human bodies, and in the 

dynamic machinery 
control that can be 
integrated into active 
structural control 
against earthquake 
risk.  For example, 
studies of human 
motion often begin 

with a simplified mechanical system of point masses and 
rigid bodies with constraints on motion.  Flexible 
building structures (for protection against earthquakes) 
can be represented by a lumped system of point masses 
and springs.  All efforts in modeling, simulating and 
controlling such dynamic systems start with the 

                                                                                                 
1 This special presentation is dedicated to Prof. Robert 
Kalaba (September 1926 - September 2004) by his last 
student Dr. Yueyue Fan.  The work is based on their 
most recent collaboration on analytical dynamics. 

derivation of equations of motion, which is the central 
part of analytical dynamics.   

As the classical field of analytical dynamics still 
serves as the theoretical foundation for many problems in 
modern science and technology, the complexity and 
large scale of most challenging and exciting new 
problems usually demand interdisciplinary collaboration 
and the aid of modern computers.  The advanced 
mathematical concepts in classical Lagrangian 
mechanics are often difficult to understand outside of 
classical mechanics.  In addition, most classical methods 
were developed before the computer era.  Their 
formulation and derivation do not allow us to make the 
best use of the modern computing environment.  Lastly, 
much of the classical analysis is based on the principle of 
virtual work, an assumption that Lagrange made to avoid 
thermodynamics concerns.  Thus, constraints that 
involve forces that do work, such as friction, have been 
ruled out of classical methods.  This limitation makes 
modeling difficult in situations where friction is not 
insignificant.  For instance, in studies of the motion of 
sports-injured and the elderly, friction is often the driving 
force that causes great pain and limits the motion and 
cannot therefore be neglected.  Therefore, new methods, 
together with extension and generalization of classical 
methods, are required for theoretical and practical 
reasons.        

Recent development [1,2] on equations of 
motion for constrained mechanical systems opens 
possibilities for addressing the above mentioned 
limitations of classical methods.  This new method 
exploits the advantages of the modern computing 
environment.  It begins the analysis directly from the 
constraints of motion imposed on the systems, and 
arrives at an explicit set of equations of motion by using 
the chain rule of differentiation and the concept of 
generalized inverses (GI) of matrices.  No generalized 
coordinate systems or any physical assumptions are 
required in the derivation.  This new method handles 
nonholonomic2 constraints with the same ease as 
holonomic constraints.  More importantly, it takes into 
account the nonideal3 constraints in a systematic and 
convenient manner.  For brevity, the new method for 
deriving equations of motion will henceforth be referred 
to as the “GI method”. 

Recent Development of the GI Method   
The original GI method [1] is equivalent to the 

classical methods such as Lagrange equation, Gibbs-
Appel Equation, Hamilton Equation, and Gauss’s 

 
2 Nonholonomic constraints depend on time, 
displacement, and velocity, and are nonintegrable. 
3 Nonideal constraints involve forces that do work on the 
system in a virtual displacement.   
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principle of least constraint.  However, the GI method 
has the advantages of providing an explicit equation of 
motion, easily handling nonholonomic constraints, and 
requiring no extra effort in treating dependent but 
consistent constraint equations.  Later, the GI formula 
was further extended to systems including non-ideal 
constraints [3].  Further studies on its relation to other 
classical principles and its potential contribution to 
theory toward general dynamic and underdetermined 
systems are still ongoing [4].   

Suppose that a mechanical system that contains 
p point masses is subjected to m holonomic or 
nonholonomic equality constraints of the form  

0),,( =txxfi & , i = 1, 2, …, m, (0) 

where x is the displacement vector of the system of 
dimension 3p = n.  We also introduce the mass matrix M, 
which is of dimension 3p by 3p, is a diagonal matrix, is 
positive definite, and has the masses m1, m2, …, mp down 
the main diagonal in groups of three, with zeros 
elsewhere.  As usual,  is the time derivative of x.  Use 
of the chain rule of differentiation leads to a set of m 
equations that are linear in , of the form 

x&

x&&

bxA =&& ,  (1) 

where A is an m by n = 3p matrix function of x, , and t, 
and b is an m by 1 column vector that may depend upon 
x, , and t.  Given the initial conditions on x and , Eq. 
(1) is equivalent to Eq. (0).   

x&

x& x&

If only ideal constraint forces are considered, it 
has been shown that the actual system acceleration 
vector is given by the explicit formula 

)()( 2/12/1 AabAMMax −+= +−−&& , (2) 

where  denotes the usual pseudoinverse of 
the matrix 

+− )( 2/1AM
2/1−AM .  Vector a is the free motion 

acceleration if there were no constraint.  Refer to 
reference [1] for the details. 

Later, the GI formula was further extended to 
systems including non-ideal constraints [3].  The general 
equation of motion is 

CLN FFFxM ++=&& , (3) 

where 

MaF N = , (4)  
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and a is the free motion acceleration vector, and c is an 
arbitrary vector, both being of dimension 3n by 1.  The 

notation recalls the names of Newton, Lagrange, and 
Coulomb.  It has been shown in reference [3] that FN is 
the newtonian impressed force vector, that FL is a 
constraint force that does no work on the system in a 
virtual displacement v, and that FC is a constraint force 
that does work on the system in a virtual displacement v.  
The type of force represented by FC is called non-ideal 
constraint force, which includes sliding friction.   

Eq. (3) is the most general possible equation of 
motion that is compatible with the constraint condition 

bxA =&& , assuming, of course, that the matrix M is 
nonsingular.  Only two essential mathematical ideas are 
essential in the derivation of Eq. (3): the chain rule of 
differentiation and generalized inverses of matrices.  
Modern computing environments, such as Matlab, have 
built-in commands for calculating the generalized 
inverse of a matrix, so it makes the approach highly 
suitable for numerical studies.  On the physical side the 
notions of mass, distance and time occur.  There is no 
mention of kinetic energy, potential energy, moments, 
etc..  In the applications to specific systems, of course, 
the customary centripetal and Coriolis forces, moments, 
and so on do appear.  These notions emerge naturally 
from the terms in the right side of Eq. (3), but no prior 
exposure to them is needed.  

In classical analytical mechanics, it is assumed 
that the constraint force does no work in a virtual 
displacement.  This means that the fundamental 
assumption of classical analytical mechanics is that 

, so that the equations of motion, Eq (3) reduce 
to Eq. (2).  More generally, though, as in situations in 
which sliding friction is significant, we shall have 

, in which case the more general equation of 
motion, Eq. (3), will apply.   

0=CF
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A Simple Example   

A simple example is used to illustrate how the 
GI formula works.  Consider a double pendulum system 
subjected to ideal constraints.  The rectangular 
coordinates (x1 y1), (x2 y2) are as shown in Figure 1.  The 
two constraints on the system are 
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Eqs. (7) and (8) on two differentiations give 
bxA =&& , (9) 

where 
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Figure 1:  A Double Pendulum 

 
Under ideal constraints, Eq. (2) is the equation 

of motion for this double pendulum system, with A and b 
defined by Eqs. (10) and (11).  The mass matrix in this 
two-dimensional problem is  
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Let the initial position be , , , 
and .  Let the initial velocity of both particles be 
zero.  The position and the velocity of the two particles 
at any time t can be obtained by integrating Eq. (2) with 
the given initial conditions.   

11 lx = 01 =y 212 llx +=
02 =y

Next, we will show how this double pendulum 
problem would have been solved in the classical 
Lagrangian mechanics.  Lagrange considered mechanical 
systems as being characterized by potential energy, 
kinetic energy and the constraint function, with an 
emphasis on the use of generalized coordinates to 
describe the current configuration.   

Let us use the two generalized coordinates θ1 
and θ2 as shown in Figure 1.  The virtual work done by 
the force of gravity is .  But   2211 ygmygm δδ +

111 cosθLy = , (12) 
so that  

1111 sin δθθδ Ly = , (13) 
and 

22112 coscos θθ LLy += , (14) 
so that  
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Using these expressions in the expression for virtual 
work, we get 
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 (16) 
Therefore, the generalized forces are 

111211 sin)( δθθgLmmQ +−= , (17) 
and 

22222 sin δθθgLmQ −= . (18) 
The kinetic energy can be written as 
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The first Lagrange equation  
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and the second equation 
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Differentiating the left hand members of Eqs. (21, 23) 
with respect to time, we obtain the equations of motion 
of the system,  
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By integrating Eq. (24) with the initial 
conditions θ1(t0) = 0 and θ2(t0) = 0, we obtain the results 
of the position of the two particles in the generalized 
coordinate system.  These results, after being converted 
to the rectangular coordinate system, are compatible with 
the results from the GI formula.   

In an ideal situation, the GI formula and the 
classical methods are equivalent.  However, the 
derivation of the equations of motion using the classical 



method is quite complicated even for this simple 
example.   

 
Handling Modification of Constraints 

Most engineering design of mechanical systems 
involves modification of constraints on the base model.  
Handling such modification using the classical Lagrange 
mechanics requires change of the generalized coordinate 
system, and thus requires change of the generalized 
forces and the kinetic energy.  Each time a constraint is 
modified, we will have to solve a completely new 
problem starting from the beginning.  However, 
modification of constraints can be easily handled by the 
GI formula.  Changing constraints of the system only 
changes matrix A and vector b in the equation of motion, 
Eq. (4).  The rest of the procedure and the data required 
all remain the same.  We will demonstrate this easy 
implementation using two examples below. 

First, let us remove the first constraint in the 
double pendulum problem.  Because only the second 
constraint is imposed on the system, as given in Eq. (8), 
only the second row of matrix A and vector b remains.  
Thus, we have 

[ 12122121 yyxxyyxxA −−−−= ], (25a) 

and 
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Given initial position and velocity of the two particles, 
the problem can be solved by integrating the equation of 
motion with the new A and b.  

Next, let us add an extra constraint to the 
original double pendulum problem  

dy −=2   (26)  

to keep the second particle moving along a horizontal 
line.  Differentiate both sides of Eq. (26) twice, we have 

02 =y&& , (27) 

which adds a third row to the original constraints 
.  The new A and b become bxA =&&

 , (28a) 
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These are the only changes needed for solving the 
modified problem.  The rest of the procedure remains the 
same.  However, this one-degree-of-freedom problem 
cannot be easily handled if we were to use the classical 
methods.  To express the kinetic energy and potential 
energy of the system in terms of single variable can be 
quite messy.   
 
Conclusions and Discussion 

In this paper, we have shown that the GI 
formula is suitable for the modern computing 
environment, and has potential to facilitate the analysis 
and control of large and complex mechanical systems.  
The only inputs required are the equations of the 
constraints and the initial conditions on the system.  The 
rest of the procedure, such as differentiating the given 
functions, computing the generalized inverses of 
matrices, and integrating systems of differential 
equations, can be automated for execution by a 
computer.  In order to fully utilize the advantage of the 
GI formula, a necessary step for future research is to 
automate the entire analysis of constrained mechanical 
systems.  Full development of the new theory will 
require long-term cross-disciplinary collaboration from 
many scholars in mechanics, computational mathematics, 
and system optimization and control.  We hope this 
paper will serve as an introduction of this GI method to 
the community of biomechanics and robotics design and 
will inspire further interest in applying and extending 
this new method. 
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