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Abstract
In this paper, we propose a Serially and Dynam-

ically Separating Genetic Algorithm (sDS-GA), and
apply it to optimize an agent-oriented control system
for an intelligent robot. The conventional DS-GA is
inapplicable as a learning algorithm for a single hard-
ware unit such as an intelligent robot. By the exten-
sion of a dynamically separating mechanism, the pro-
posed sDS-GA becomes applicable as an optimization
algorithm for a single hardware unit. We conducted
experiments with sDS-GA that optimize the parame-
ters of a control system for an intelligent robot called
MieC. The sDS-GA obtained not short-term but long-
term optimality. We also found that sDS-GA is effi-
cient for the optimization of an actual intelligent robot
under an unknown and dynamic environment.

1 Introduction

There have been many studies of control systems
for robots[1, 2]. In particular, many intelligent robots
operate by agent-oriented programming. However, in
agent-oriented programming, it is difficult to design
the entire agent optimally beforehand. In this pa-
per, we focus on a Dynamically Separating Genetic
Algorithm (DS-GA)[3, 4] as an optimization algorithm
for agents in an intelligent robot that is controlled by
agent-oriented programming.

An intelligent robot must be designed taking the
following into account. It has to do various processing
at the same time, such as target determination, image
processing, data transferring, and arm and wheel con-
trol. The priority of the processing changes in response
to the influences of external factors and internal fac-
tors, such as interaction with humans, and the residual
quantity of the battery. The optimal parameters for
processing are dynamically changed by these factors.
As such, an adaptation algorithm is required.

In the environment of an actual robot, there is a
time lag between the decision of the agent’s action
and the action of the robot. Whether or not the ac-
tion is appropriate is determined after a certain time’s
passing. In order to optimize the control system of an
actual robot, because of the above environment, an al-
gorithm that can obtain not short-term but long-term
optimality is required.

DS-GA has the ability to increase system-level op-
timality by the autonomous learning of agents based
on local information by using the dynamic separation
of the agent’s interaction. In other words, system-level
information emerges from collective agent-level infor-
mation by ”Swarm-Sensing,” which is a characteristic
of DS-GA. We expect that extended DS-GA will have
the ability to increase long-term optimality by the au-
tonomous learning of agents based on short-term in-
formation.

The conventional DS-GA uses the dynamically sep-
arating mechanism of its agents. However, in the case
where an agent controls a single hardware unit such
as an intelligent robot, the DS-GA is inapplicable as
a learning algorithm for a robot. In order to optimize
a single hardware unit that is designed by an agent-
oriented control system such as an intelligent robot,
we extend DS-GA to form a Serially and Dynamically
Separating Genetic Algorithm (sDS-GA) that includes
the time-separating mechanism of the agents.

In DS-GA, many agents act simultaneously, and the
interactions of many agents are restricted in a colony.
In sDS-GA, a control-agent is chosen serially and the
influence of the agent’s action is decreased with time.
In order to reduce an interaction with an agent that
belongs to other colonies, the agents who belong to
the same colony are chosen continuously.

In order to verify the validity of the proposed sDS-
GA, we applied the sDS-GA to an object tracing
task for a Movable Intelligent Evolutional Computer
(MieC) as an actual robot.



2 Serially and Dynamically Separating
Genetic Algorithm (sDS-GA)

In this section, we propose the Serially and Dy-
namically Separating Genetic Algorithm (sDS-GA) as
an applicable DS-GA for an actual robot. The con-
ventional DS-GA uses dynamic separation as follows.
Agents that are separated into colonies act simulta-
neously. The interactions of agents are restricted in a
colony, and an agent cannot contact any agent that be-
longs to another colony. The colonies change dynami-
cally according to the number of agents they contain.
When the number of agents in a colony increases, the
colony is divided into two halves. A colony is extin-
guished when the number of agents it contains be-
comes 0.

We propose sDS-GA for use as a control system for
an actual robot. The basic idea of sDS-GA is as fol-
lows. In sDS-GA, control-agents are separated into
colonies. Agents in a colony control a robot in a pe-
riod serially. In a certain period, control-agents who
belong to a certain colony are chosen randomly, and
they control the robot serially. In the next period,
control-agents who belong to the next colony are cho-
sen randomly, and they control the robot serially.

As a result, the interval of control by an agent that
belongs to the same colony is much shorter than the
interval of control by an agent that belongs to other
colonies. In other words, the influence by a certain
agent’s action is strong for the agent that belongs to
the same colony, and weak for the agent that belongs
to other colonies. Serial separation is realized by such
a mechanism. We show the main routine of the algo-
rithm using sDS-GA in Fig. 1.
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Figure 1: Main routine of the sDS-GA shown by NS
chart.

Specifically, in the experiments described in this pa-
per, the evolution of a population is based on the split

or extinction of agents according to their private per-
formance, e.g., accumulated profit. Consequently, an
agent’s autonomy is not spoiled and agents can still
learn by means of evolution. The learning algorithm
used by the DS-GA is as follows.

(1) Initialization: NA(t) agents at t = 0 are cre-
ated and separated into colonies. The number
of agents in a colony is NLim/2. The evalua-
tion value of an agent a, EA(a, t), is initially set
to EA(a, 0) and its action determination gene,
GeneAct(a), is initially randomly chosen.

(2) Colony Loop: Every colony takes charge of the
control in order.

(3) Agent Choosing: An agent is chosen from the
colony for robot control randomly.

(4) Action (Robot control of agent): The agent acts
for robot control. Details are shown in section 3.
The agent changes its own evaluation value based
on the result of the action.

(5) Split and Extinction of Agents: An agent is split
into two agents when the evaluation value by an
agent becomes more than twice the initial value
(EA(a, 0)). The two agents inherit half of the
original agent’s evaluation value. An action gene
is mutated according to the mutation probability
Pmut. An agent is extinguished from the colony
when its evaluation value becomes less than or
equal to zero.

(6) Dynamic Separation of Colonies: When the num-
ber of agents in a colony exceeds the limit NLim,
the agents are separated into two half-colonies.
The difference in the number of agents between
the two colonies is either 1 or 0.

(7) Random Elimination: When the total number of
agents that can exist in the robot control system
becomes greater than the initial number of agents
(NLim), a colony is eliminated at random.

In the experiments, the number of initial agents was
set to NA(0) = 100, the number of maximum agents
in a colony was set to NLim = 20, the mutation prob-
ability Pmut = 0.1, and the initial accumulated profit
EA(a, 0) = 100 for all agents.

3 Experiment

Each agent has an evaluation value for its own task
achievement, and has no information about the other



task achievements. We think that the total of their
evaluation values is maximized, so that the system be-
comes optimal. But, it is not always maximized as an
entire system, even if each agent acts in order to max-
imize its task achievement, i.e., the system may have a
dilemma on a task achievement such as the following.
An agent may be unable to use computer resources to
do a task, if another is doing a task by using computer
resources. An agent may be unable to maximize a task
achievement in a longer term, if it maximizes a task
achievement in a shorter term.

In this section, we verify experimentally that sDS-
GA is efficient for actual intelligent robots. Here, we
use an auto guided tracked vehicle with a camera,
called (MieC) as an actual intelligent robot.

Concretely, applying sDS-GA, the control parame-
ters of MieC are optimized when MieC traces a ball
that moves on the same plane.

3.1 Movable Intelligent Evolutional Com-
puter (MieC)

Here, we use the Movable Intelligent Evolutional
Computer (MieC) shown in Fig. 2as an actual intel-
ligent robot. MieC has two motors as movable actua-
tors, two encoders for the motors as internal sensors,
and a camera as an external sensor.

Figure 2: Movable Intelligent Evolutional Computer
(MieC)

3.2 Tracing Control

The flow of target tracing control is shown in Fig. 3.
This control flow is one of the simplest in this case. (1)

The current position of the target is solved by process-
ing an image from the camera. (2) The position com-
mand of MieC is determined by the error between the
target position and the current position. (3) The tar-
get rotation angles of the left and the right tracks are
calculated from the position command, considering the
inverse kinematic of MieC. (4) The voltage commands
to motors are determined by the errors between the
target positions and the value current positions, re-
spectively. (5) The motors are rotated by the voltage
commands, respectively. (6) Return to (1).
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Figure 3: The block diagram for the target tracing of
the traced vehicle

In steps (2) and (4), the commands are determined
by the errors and the gains GI and GM . Here we treat
the gains GI and GM as proportionality constants, al-
though the gains have to be determined, considering
the weight and the inertia moment of MieC and the
characteristics of the motors, etc. The execution cycle
(1)～(3) and the execution cycle (4)～(5) depend on
the execution speeds of image-processing and motor-
control, respectively. These execution cycles are con-
sidered to determine the gains GI ,GM . Here, these
parameters GI ,GM are optimized applying sDS-GA.

3.3 sDS-GA Coding

We give each agent gene GI or GM . GI takes one
of 10 quantized values 0.0, 0.1, 0.2, · · ·, 0.9. GM takes
one of 10 quantized values 0.0, 0.3, 0.6, · · ·, 2.7. The
agents with gene GI and gene GM can call the cycle(1)
～(3) and the cycle(4)～(5), respectively. However,
the agent cannot call a cycle before the same cycle is
completed. Each agent is evaluated by how much and
how fast MieC can trace the target during the time in
its duty.

3.4 Experiments and Discussion

We gained the following results. The histories of
the population ratios of GI(0.0, 0.1, 0.2, · · ·, 0.9) and
GM (0.0, 0.3, 0.6, · · ·, 2.7) are shown in Fig. 4, re-
spectively. The horizontal axes express the number



of times the colony loop was performed. The vertical
axes express the ratios of GI and GM with each of 10
quantized values, respectively.
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Figure 4: The history of the population ratio

GI converged on the optimal value 0.2. GM did
not converge, but the average of GM in each colony
converged near the optimal value 1.8. It is believed
that the action time of each agent is so short in this
case that an agent’s action affects not itself but other
agents in the same colony, evenly. In other words,
agents in the same colony evenly affect each other. As
the results, the average in each colony converged, but
the agents did not converge. Therefore, a single agent
with GM cannot aquire the optimal value, but aquires
the optimal value as the average. On the other hand,
a single agent with GI aquired the optimal value. It
is believed that the average was equal to the value of
the agent, since only a few agents with GI are in the
same colony.

From the above discussion, it is believed that both
GI and GM are optimized by applying sDS-GA. The
sDS-GA is efficient for the optimization of a control
system for MieC as an actual intelligent robot under
an unknown environment.

4 Conclusion

In this paper, we proposed the Serially and Dynam-
ically Separating Genetic Algorithm (sDS-GA) as an
optimization algorithm for an actual intelligent robot
control system.

In order to verify the validity of sDS-GA for the op-
timization of intelligent robot control, we applied sDS-
GA to a target tracing task for a Movable Intelligent
Evolutional Computer (MieC) as an actual intelligent
robot.

Experimental results show that even if there is a
time lag between the decision of the agent’s action

and the action of the robot, and even if the agent
learns based on short-term information, sDS-GA can
obtain not short-term but long-term optimal param-
eters of the control system. These characteristics of
sDS-GA are similar to the characteristics of the con-
ventional DS-GA, which obtains system-level optimal-
ity by agents’ learning based on local information by
the use of ”Swarm-Sensing”. These results suggest
that sDS-GA is efficient for the optimization of an ac-
tual robot control system under an unknown environ-
ment.
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