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Abstract 

Issues such as multiobjective optimization, time -series 
prediction, the analysis from noisy observation data, and 
the solution of implicit functions are all crucial in the 
consideration of real world problems, and research into 
the applicability of evolutionary computer techniques to 
these problems has already begun [1–9,13]. However, 
there are only a few examples of studies where 
evolutionary computer techniques have been applied to 
problems that involve all of these issues at the same time. 
One such examples are  previous studies in which we 
reported on the effectiveness of genetic algorithms  (GA) 
as a tool for tracking objects as they move towards a 
destination while making evasive maneuvers in order to 
avoid pursuit or attack. In another study, we reported on 
the effectiveness of GA as a tool for tracking objects  in 
the earth orbit. All our previous reports are based on the 
active observed data. In this paper, we verify the 
applicability of GA to the problem of analyzing the 
movement characteristics of flying objects based on only 
passive observed data. Key words : Tracking, Analysis 
based on observed passive data, Analysis  from noisy data. 

1   Introduction 

In previous reports, we considered the two 
dimensional movement of an object whose evasive 
motion was assumed to consist of constant-
velocity straight-line, simple sinusoidal and 
sawtooth motion [10, 11]. In another previous 
report, we considered the three dimensional path 
elements of the moving objects in a earth orbit 
whose motion consists of circles, ellipses [12].  
These previous analysis are based on active 
observed data gathered by radar, laser or active 
sonar. In this paper, we report the three 
dimensional movements analysis for the flying 
object like a fighter in the air, from passive 
observed data without the active observed data.  
The passive observed data means that they can be 
gathered by the observation equipment in its 
surveillance mode without radiation of electric-
magnetic wave(EMW), only by observation of the 
EMW radiated by the flying object. The passive 
observed data consist of the bearing and elevation 
angles from observer. Active observed data means 
that they can be gathered by the observation 
equipment in its radiation mode of the EMW. 
Active observed data contain distance component.  
The movement characteristics to be analyzed  

 
 

based on  the passive observed data must contain 
the  distance components. If the flying object is 
enemy aircraft for the observer, the observer 
should not radiate the EMW for concealing the 
existence of observer itself, because the enemy 
aircraft may starts counter attack operation to 
the observer. Therefore, the analysis for the 
movement characteristics of the flying object 
based on the passive observed data has the 
tactical meanings. The movement characteristics 
are the present distance, the velocity and the 
three dimensional proceeding course of the flying 
object. The other hand, to analyze the movement 
characteristics of the flying object rightly from 
only the passive observed data, it is necessary 
that the removal  observer changes the velocity 
or course of itself at least one times during the 
analysis, because there are infinite solutions in 
case of no changing of the velocity and course of 
observer. This can be took the place by the plural 
foxed position observers arranged different places. 
Even though, the movement of the flying object 
has constant velocity and course in short period, 
this analysis has the problems such as described 
in the beginning of abstract.  

2  Tracking of a Flying Object in the Air 

2.1  Earth Surface coordinates and Movement 
Characteristics of the Flying Object  

The relationship between the earth surface coordinates 
xyz and the movement characteristics is illustrated in 
Figure 1. This shows a flying object is proceeding to the 
destination. Its velocity and course are assumed as 
constant in the period of analysis. The velocity is V. East-
West(x) components of velocity V is  Vx. North-South(y) 
components is  Vy. Radius direction of the earth 
component(y) is Vz. Proceeding horizontal course 
measured clockwise from the north direction (y) of the 
flying object is Cmh, vertical course measured upward 
from surface is Cvm. Initial position of the observer is 
Xo(t0),Yo(t0),Zo(t0). This point is the origin of the earth 
surface coordinates. Exact values of them are 0, 0, 0. The 
position of the observer at time tn is Xo(tn), Yo(tn), Zo(tn). 
Initial position of the flying object is Xm(t0), Ym(t0), 
Zm(t0) and position of time tn is Xm(tn), Ym(tn), Zm(tn). 
The observer observes the bearings and elevations of 
flying object intermittently as removing on the ground. 
This removal observer must change its velocity or course 
at least one times during the analysis because there are 
infinite solutions in case of no changing. This can be took    
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the place by the plural fixed position observers arranged 
different places. Initial bearing is B(t0) and bearing at 
time tn is  B(tn). Initial elevation is E(t0) and elevation at 
time tn is E(tn). Intial dis tance from observer to the flying 
object is D(t0) and distance at time tn is D(tn).  
 
2.2 Formulation of Analysis for the Movement 

Characteristics of the flying object  
 In the following, we show the relationship between the 
inferred values of the movement characteristics—initial 
distance D(t0), East-West components of velocity Vx. 
North-South components of velocity Vy. Radius direction 
of the earth component velocity Vz —and flying object’s 
bearing B(tn) and elevation E(tn) at time tn.  

Position of the observer at time tn is expressed by 
equation (1).   
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Position of the flying object at time  t0 is expressed by 

equation (2) as the function of initial distance D(t0). 
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Position of the flying object at time  tn is expressed by 

equation (3) as the function of x,y,z  component of flying 
object’s velocity. 
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 Distance x,y,z components of the flying object from the 
observer at time tn is expressed by equation (4). 
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 Distance at time tn is expressed by equation (5). 
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Figure 1: The movement of the flying object and the observer at time from t0 to tn in the coordinates  xyz.  

                             z                          {Xm(tn),Ym(tn),Zm(tn)} 

                 Radius of earth direction 

                         

                    

                                   N 

                                                    Cmv    V      Vz 

                               Vx           y 

               {Xm(t0),Ym(t0),Zm(t0)}        Vy       North(N) 

                           Cmh    E 

                    

                    

                                           D(t0)                   D(tn) 

                                                                               N 

                                                                E(tn) 

                                                                    B(tn) 

                                           E(t0)                     

                                   B(t0)                 {Xo(tn),Yo(tn),Zo(tn)} 

                           {Xo(t0),Yo(t0),Zo(t0)}       Vo(t),Co(t),Eo(t) 

                                                                      East(E)  x 

 Xo(tn):observer X position of time tn 

Yo(tn):observer Y position of time tn 
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Xm(tn):mover X position of time tn 

Xm(tn):mover Y position of time tn 

Xm(tn):mover Z position of time tn 

B(tn):bearing of time tn 
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Vo(t): observer velocity of time t 
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Bearing at time tn is expressed by equation (6). 
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Elevation at time tn is expressed by equation (7). 
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 Velocity of the flying object is expressed by equation (8). 
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 Horizontal course of the flying object is expressed by 
equation (9). 
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 Vertical course of the flying object is expressed by 
equation (10). 
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Accordingly, the problem addressed in this paper — 
i.e., that of analyzing the three dimensional movement of 
a flying object — can be formulated as an inverse 
problem involving complex implicit functions where it is 
necessary to find the four characteristics—initial distance 
D(t0), velocity x component Vx, y component Vy, z 
component Vz—of a flying object by working backwards 
from noisy time-series observations of its bearing and 
elevation obtained from the observer. The present 
distance D(tn), velocity V, horizontal course Cmh, 
vertical course Cmv of the flying object are calculated 
from D(t0), Vx, Vy, Vz by equation (5), (8), (9), (10).   

3   Method to Apply Genetic Algorithms 

3.1  The Movement Characteristics Determined 
by Genetic Algorithms  

Four movement characteristics — initial distance D(t0), 
flying object velocity x  component Vx, y  component Vy, z 
component Vz — constitute a complex implicit function, 
so we will try to use genetic algorithms to determine their 
values. Initial distance D(t0) can be biased by offset value 
because observer can detect the existence of the flying 
object before it approach to certain minimum area of 
distance to the observer. If bias value is Dbias, GA 
operation value for initial distance Dga is D(t0)-Dbias.  

3.2 Chromosome Coding Method 
We defined chromosomes respectively corresponding to 

the characteristics—initial distance Dag and flying 
object velocity x component Vx, y component Vy, z 
component Vz. And we expressed a single individual as a 
set of these characteristics as sub chromosomes. But the 
sub-chromosome of the initial distance Dga and the 
velocity Vx,Vy,Vz consist of different length bits 
according to range of its value and necessary resolution. 
The initial distance Dga consists of integer 18 bits, 
velocity of Vx,Vy,Vz consists of integer 17 bits. 

The physical range over which each sub chromosome 
are expressed are set considering the possible range of 
distance and velocity of flying object, analysis period of 
time and the observation precision of passive 
observations. Assumed range of initial distance is 
50,000m~200,000m, assumed range of velocity is 
± 500m/sec and assumed bearing and elevation error is  
less than 0.1degree. Analysis period of time to get 
effective accuracy should be less than 100sec. 

The minimum units of these sub chromosome are set as 
follows by considering above conditions: initial distance 
D(t0) is 1m, flying object velocity component Vx, Vy, Vz  
is 1/100m/sec. In exact physical calculation of this 
simulation, initial distance D(t0) is biased by constant 
value Dbias=50,000m (Dga= D(t0)-Dbias).   

3.3 Fitness Function 
We determine the angles error between the observed 

angles(bearing and elevation) data of the moving object 
and the angles data inferred by GA, and we defined the 
fitness of an individual based on the reciprocal of the 
square root of the sum of these errors. The fitness 
function is shown in Equation (11). 
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Here, esBti, esEti are the bearings and elevations 

estimated by GA at time ti, oBti and oEti are the bearings 
and elevations observed at time ti, n +1 is the number of 
observations, and k is a suitable constant. For example, 
case of k =1, it is set so that f=1.0 when the average angle  
difference is 1.0 degree. 

3.4   Genetic Operation 
The method for selecting the group of individuals 

carried forward  to the next  generation from the current 
generation is shown in Figure  2. All individual (the total 
number of chromosomes)P sent from the previous 
generation is evaluated by calculation of fitness and 
sorted in descending order. Fixed proportion E from the 
highest fitness individual is  retained as elite, and the 
number of discarded individuals  are supplemented by 
roulette selection to preserve the original population P. M  
(=P-E) is  the number of discarded individuals. Making up 
of the deficit for M is  done as follows. One pair of 
individual is  chosen as parent by roulette selection from 
all individual P of the current generation. The sub 
chromosomes Dga, Vx, Vy, Vz of this  one pair of 
individual is  then subjected to single point crossover 
between each of the same kind of sub chromosomes 
independently (i.e. crossover between Dga and Dga, Vx 
and Vx, Vy and Vy, Vz  and Vz,of both individual) to 
produce one pair of child individual.  

After crossover operation, all sub chromosome of 
produced one pair child individual is  subjected to 
spontaneous mutation independently. Through the 
crossover and spontaneous mutation processes, one pair 
of new individual is  produced and carried forward to the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

next  generation. Above processes  are repeated until the 
making up of the deficit for M is  completed (M/2 times).  
In preliminary trials  we found two phenomena.  

The first of those phenomena is that the solution starts to 
converge around the 20th generation, so for subsequent 
generations we reduced the spontaneous mutation rate for 
all sub chromosomes. We did those to avoid destroying 
the sub chromosome that had already approached 
convergence. In the exact simulation, the spontaneous 
mutation rate is  changed from the 20th generation 
onwards as described in Section 4.2 Simulation Data. The 
results of the reducing the spontaneous mutation rate is  
described in Section 4.3 Results of Simulation.  
The second phenomenon is as follows. From the 10th  
generation onwards, new two type individuals  
(chromosome) are effective for the earlier convergence. 
One of them is  calculated as much 2% uniform random 
numbers of the sub chromosomes contained in the fittest 
individual of the current generation. The other is 
calculated as much 2% uniform random numbers of the 
sub chromosomes contained in the roulette selected 
individuals  from the current generation. The number of 
these new two type individual are 10% for total number 
of individual. The results of the supplement the modified 
sub chromosomes is described in Section 4.3 Results of 
Simulation.  

4 Evaluation Tests 

4.1 Evaluation Method 
We made a software system shown in Figure 3 for the 

evaluation of this research. This system consists of three 
modules of software, Observed data Generator, Estimated 
value Generator and Estimated value Evaluator.  They do 
cooperative works for evaluation.   

Observed data Generator 

Based on the theoretical movement characteristics of a 
flying object provided by the operator, the observed data 

generator calculates the theoretical values of the object’s, 
bearing (Bti) and elevation (Eti) at time ti for 1-second 
intervals from the time t0 at which the observation starts. 
It then adds normal random number errors εbti and εeti to 
the calculated theoretical values to simulate the errors 
produced by an observation system, such as electric 
magnetic wave beam fluctuations, instrumentation errors, 
and conversion errors, to produce the observed bearing 
(oBti) and observed elevation (oEti).  

As the observation time  ti is increased, the observed 
data generated for experimental use are stored along with 
the observation time ti in the database for observed data. 
This observation data gathering cycle is continued until 
simulation ends. 

Estimate value Generator 

The Estimated value Generator generates the estimated 
bearing (esBti) and estimated elevation (esEti) based on 
estimated sub chromosomes in the chromosomes. The 
initial values of the sub chromosomes are set randomly to 
values in the defined ranges by using uniform random 
numbers. and uses genetic algorithms to renovate the 
estimated values of sub chromosomes. The values of 
esBti and esEti (t0 ≤ ti ≤ tn) are calculated by Equations 
(6), (7) based on the renovated values of sub 
chromosomes. These renovated esBti and esEti are sent to 
the Estimated value Evaluator.  

Next, we will describe how the GA is used to renovate 
the estimated values of the sub chromosome. In the 
Estimated value Generator, the values of esBti and esEti 
corresponding to each individual are sent to the Estimated 
value Evaluator.  

Next, based on the received fitness values, the method 
described in section 3.4 is used to select the fittest 
individuals and perform crossovers and spontaneous 
mutations, thereby updating the generation i.e., 
renovating the estimated values of the sub chromosomes. 

Here, the renovating of the estimated values of the sub 
chromosomes using a genetic algorithm is started at the 
point when a certain set of observed data is stored into the  

Figure 2: Flowchart of genetic operation. 1 pair of chromosome  is selected by roulette 
selection, and crossover and spontaneous mutation are done for each sub-chromosome 
respectively. 
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database for observed data. Spontaneous mutation rate are 
changed at around convergence generation of the analysis 
in order to broaden the search space before convergence 
and to avoid destroying the solution after convergence.  

Estimated value Evaluator 

For every observation time, the Estimated value 
Evaluator calculates the fitness of each individual 
according to Equation (11) based on the values of the 
observed bearing (oBti) and elevation (oEti) input from 
the database for observed data and the estimated bearing  
(esBti) and estimated elevation (esEti) input from the 
Estimated value Generator. These calculated fitness 
values are sent to the Estimated value Generator, where 
they are used for genetic manipulation. The above 
processes of generating observed values, generating 
estimated values and performing evaluation are repeated 
until a stopping criterion is met. The stopping criterion 
was taken to be the fulfillment of either of two 
conditions: that an individual appears whose fitness 
exceeds a preset standard fitness, or that the number of 
generations of genetic manipulation becomes greater than 
a certain value. 

4.2   Simulation Data  
In this simulation, the parameters of genetic operation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

were set as follows:  
(1)maximum genetic manipulation generation:50 (2) 
observed data set prior to GA start : 60 (3) number of total 
individuals: 6000 (4)number of elite:60 (5)crossover 
ratio: 0.8 (6)spontaneous mutation rate: 0.00001 before 
the 20th generations, and 0.000005 from the 20th 
generation onwards.  

The physical parameters are as follows: 
(1) Initial distance : 150000m (2) Initial bearing : 5.0deg 
(3) Initial elevation : 5.0deg (4) Velocity of flying object : 

340m/s (5): Horizontal-course of flying object:110.0deg  
(6) Vertical-course of flying object : 5.0deg (7)observing: 

by two observers arranged 5km apart. (8) observation 
error (maximum) : 0.004 deg, 0.020deg, 0.100deg 

4.3   Results of Simulation 
Figure 4 shows how the best fitness for three kinds of 

error of the observation vary with the number of 
generations in cases where the movement of the fly ing 
object is assumed to be linear movement. To obtain a 
maximum fitness value of 1.0, the fitness fg on the 
vertical axis in this figures is the normalized value 
obtained from the relationship fg = 1− 1/f, where f is the 
fitness defined in Equation (11). The observations are  
made at 1-second intervals by the observer having an 
bearing and elevation observation errors. At the time of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure3: The flowchart of GA evaluation system. The GA evaluation system consists of Observed 
data Generator, Estimated value Generator and Estimated value Evaluator.  

Table1: The accuracy of analyzed initial distance D(t0), 
velocity component Vx, Vy, Vz, velocity V, horizontal course 
Cmh and vertical course Cmv. 
 

sub-chromo D(t0)(m
) 

Vx(m/s) Vy(m/s) Vz(m/s) 

theory  150000 333.6 -58.8 29.6 
err=0.004o 37 0.1 0.1 0.1 
err=0.020o 155 0.6 1.2 0.2 
err=0.100o 522 0.8 4.0 0.3 
 
out put V(m/s) Cmh(deg) Cmv(deg) 
theory  340.0 100.0 5.0 

err=0.004o 0.1 0.0 0.0 
err=0.020o 0.5 0.2 0.1 
err=0.100o 0.6 0.7 0.2 

 

 Figure4: The maximum and average fitness for generations.  
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the 60th observation (i.e., 60 seconds after the 
observations are started), the first generation of GA starts. 
Figure 4 shows the best fitness (Fg) of three kinds of 
observation error grow up sharply and they converge 
around at 7~15th generation. The fitness of the 
observation error 0.004deg grows up at the earliest 
generation. The fitness of observation error 0.1deg grows 
up last. Table 1 shows the accuracy of the analyzed 
movement characteristics (sub chromosomes) for the 
three kinds observation error at the 50th generation. The 
accuracy of the observation error 0.004deg is the best and 
the accuracy of observation error 0.1deg is the worst 
among three kinds of error. Reducing the spontaneous  
mutation described in Section 3.4 Genetic Operation is 
effective for the early convergence by several %. New 
two type chromosomes described in Section 3.4 effects to 
make the convergence generation earlier by more than 
10%. These data are average values of 20 trials.  

4.4   Discussion 
From the above experimental results, it can be judged 

that by applying GA to the analysis  for the movement 
characteristics of a flying object whose four 
characteristics are all unknown, it is  possible to analyze 
these values only from time-series values of the observed 
bearing and elevation of the flying object obtained from 
observation equipment. Since the analysis results are all 
based on observation data, it can be judged that the 
necessary time for the completion of analysis  is effected 
by the errors contained in observed bearing and elevation. 
The smaller the errors contained in observed data are, the 
faster and the more accurately the analysis completes. 
However, even though, the errors contained in the bearing 
and elevation extend to around 0.1 degrees, the accuracies 
of the results and the completion time of the analysis  are 
still in effective range.  

To shorten the analysis time, we must do furthermore 
investigation for the effect of the parameters of GA. 
These parameters are  number of stored data prior to 
analysis start, number of chromosome, number of elite, 
crossover rate and mutation rate. Also, we must deepen 
the quantitative analysis of the effectiveness of reducing 
spontaneous mutation and new two type chromosome 
described in Section 4.3 Results of simulation.     

5   Conclusion 

As a problem including various issues such as 
multiobjective optimization, time-series prediction, the 
analysis from noisy observation data, and the solution of 
implicit functions, we have investigated the applicability 
of genetic algorithms to the analysis of the three 
dimensional and dynamic  linear movement of a flying 
object in the air based on the passive observed data. In the 
future ,we aim to demonstrate that genetic algorithms are 
suitable for solving three dimensional and non linear 
movement analysis problems for objects moving in the air 
and seawater by expanding this technique in a practical 
amount of time and practical level of precision. Also, we 
aim to demonstrate that genetic algorithms are suitable 
for the more wide and complex analysis for the facts in 
the nois y data. 
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